The synthetic peptide, R(2)N-COCH(2)OCH(2)CO-Gly-Gly-Gly-Pro-Gly-Gly-Gly-OR', was shown to be selective for Cl(-) over K(+) when R is n-octadecyl and R' is benzyl. Nineteen heptapeptides have now been prepared in which the N-terminal and C-terminal residues have been varied. All of the N-terminal residues are dialkyl but the C-terminal chains are esters, 2 degrees amides, or 3 degrees amides.
View Article and Find Full Text PDFA family of compounds having twin octadecyl anchor chains and various polar headgroups were designed to be ceramide mimics. The compounds prepared increase the apparent permeability of phospholipid vesicles to chloride and carboxyfluorescein anions. In addition, significantly larger vesicles are observed after exposure to these compounds suggesting the possibility of vesicular fusion.
View Article and Find Full Text PDFFive heptapeptide derivatives, [CH3(CH2)17]2NCOCH2OCH2CO-Gly-Gly-Gly-Pro-Gly-Gly-Gly-OR, in which R = ethyl, 2-propyl, heptyl, benzyl, and cyclohexylmethyl, were found to transport chloride anion through a phospholipid bilayer to varying extents dependent on the identity of R. It was concluded that the R group is a membrane anchor for the synthetic chloride channels.
View Article and Find Full Text PDF