Biochar has been prepared by pyrolysis of (the vegetable sponge produced by ) and activated by mixing the pyrolyzed powder with KOH and pyrolyzed again. Non-activated and activated biochar have both been structurally and then electrochemically characterized to record their differences and assess their suitability as bifunctional oxygen reduction and oxygen evolution reaction electrocatalysts in Zn-air batteries. Non activated biochar carries several functional groups; however, the activation procedure led to a material with mainly O and Mg groups.
View Article and Find Full Text PDFThe hydrogenation of CO is a reaction of key technological and environmental importance, as it contributes to the sustainable production of fuels while assisting in the reduction of a major greenhouse gas. The reaction has received substantial attention over the years within the catalysis and electrocatalysis communities. In this respect, the electrochemical promotion of catalysis (EPOC) has been applied successfully to the CO hydrogenation reaction to improve the catalytic activity and selectivity of conductive films supported on solid electrolytes.
View Article and Find Full Text PDF