The discovery and engineering of novel biocatalysts capable of depolymerizing polyethylene terephthalate (PET) have gained significant attention since the need for green technologies to combat plastic pollution has become increasingly urgent. This study focuses on the development of novel substrates that can indicate enzymes with PET hydrolytic activity, streamlining the process of enzyme evaluation and selection. Four novel substrates, mimicking the structure of PET, were chemically synthesized and labeled with fluorogenic or chromogenic moieties, enabling the direct analysis of candidate enzymes without complex preparatory or analysis steps.
View Article and Find Full Text PDFPlastic pollution presents a global challenge, impacting ecosystems, wildlife, and economies. Polyethylene terephthalate (PET), widely used in products like bottles, significantly contributes to this issue due to poor waste collection. In recent years, there has been increasing interest in plant biomass-degrading enzymes for plastic breakdown, due to the structural and physicochemical similarities between natural and synthetic polymers.
View Article and Find Full Text PDFGlycoside hydrolase (GH) 30 family xylanases are enzymes of biotechnological interest due to their capacity to degrade recalcitrant hemicelluloses, such as glucuronoxylan (GX). This study focuses on a subfamily 7 GH30, TtXyn30A from Thermothelomyces thermophilus, which acts on GX in an "endo" and "exo" mode, releasing methyl-glucuronic acid branched xylooligosaccharides (XOs) and xylobiose, respectively. The crystal structure of inactive TtXyn30A in complex with 2-(4-O-methyl-α-D-glucuronosyl)-xylotriose (UXX), along with biochemical analyses, corroborate the implication of E233, previously identified as alternative catalytic residue, in the hydrolysis of decorated xylan.
View Article and Find Full Text PDFThe rapid escalation of plastic waste accumulation presents a significant threat of the modern world, demanding an immediate solution. Over the last years, utilization of the enzymatic machinery of various microorganisms has emerged as an environmentally friendly asset in tackling this pressing global challenge. Thus, various hydrolases have been demonstrated to effectively degrade polyesters.
View Article and Find Full Text PDFJ Hazard Mater
August 2023
Plastic pollution remains a significant environmental challenge, with conventional waste management strategies proving insufficient in addressing the problem. Enzymatic degradation has emerged as a promising alternative, with LCC, an engineered metagenome-derived cutinase, being the most effective in degrading polyethylene terephthalate (PET), the most commonly produced and discarded polyester. However, more efficient PET-hydrolases are needed for the upscaling of a PET-waste biorefinery.
View Article and Find Full Text PDFFeruloyl esterases (FAEs) hydrolyze the ester bonds between hydroxycinnamic acids and arabinose residues of plant cell walls and exhibit considerable diversity in terms of substrate specificity. Here, we report the crystal structure of an FAE from Fusarium oxysporum (FoFaeC) at 1.7 Å resolution in complex with p-coumaric acid, which is the first ligand-bound structure of a tannase-like FAE.
View Article and Find Full Text PDFThe uncontrolled release of plastics in the environment has rendered them ubiquitous around the planet, threatening the wildlife and human health. Biodegradation and valorization of plastics has emerged as an eco-friendly alternative to conventional management techniques. Discovery of novel polymer-degrading enzymes with diversified properties is hence an important task in order to explore different operational conditions for plastic-waste upcycling.
View Article and Find Full Text PDFEffective interfacing of energy-efficient and biobased technologies presents an all-green route to achieving continuous circular production, utilization, and reproduction of plastics. Here, we show combined ultragreen chemical and biocatalytic depolymerization of polyethylene terephthalate (PET) using deep eutectic solvent (DES)-based low-energy microwave (MW) treatment followed by enzymatic hydrolysis. DESs are emerging as attractive sustainable catalysts due to their low toxicity, biodegradability, and unique biological compatibility.
View Article and Find Full Text PDFThe field of enzymatic degradation of lignocellulose is actively growing and the recent updates of the last few years indicate that there is still much to learn. The growing number of protein sequences with unknown function in microbial genomes indicates that there is still much to learn on the mechanisms of lignocellulose degradation. In this review, a summary of the progress in the field is presented, including recent discoveries on the nature of the structural polysaccharides, new technologies for the discovery and functional annotation of gene sequences including omics technologies, and the novel lignocellulose-acting enzymes described.
View Article and Find Full Text PDFFungal xylanases belonging to family GH30_7, initially categorized as endo-glucuronoxylanases, are now known to differ both in terms of substrate specificity, as well as mode of action. Recently, TtXyn30A, a GH30_7 xylanase from Thermothelomyces thermophila, was shown to possess dual activity, acting on the xylan backbone in both an endo- and an exo- manner. Here, in an effort to identify the structural characteristics that append these functional properties to the enzyme, we present the biochemical characterization of various TtXyn30A mutants as well as its crystal structure, alone, and in complex with the reaction product.
View Article and Find Full Text PDFInspirational concepts, and the transfer of analogs from natural biology to science and engineering, has produced many excellent technologies to date, spanning vaccines to modern architectural feats. This review highlights that answers to the pressing global petroleum-based plastic waste challenges, can be found within the mechanics and mechanisms natural ecosystems. Here, a suite of technological and engineering approaches, which can be implemented to operate in tandem with nature's prescription for regenerative material circularity, is presented as a route to plastics sustainability.
View Article and Find Full Text PDFPolyphenol oxidases (PPOs) are an industrially relevant family of enzymes, being involved in the postharvest browning of fruits and vegetables, as well as in human melanogenesis. Their involvement lies in their ability to oxidize phenolic or polyphenolic compounds, which subsequently form pigments. The PPO family includes tyrosinases and catechol oxidases, which, in spite of their high structural similarity, exhibit different catalytic activities.
View Article and Find Full Text PDFPolyethylene terephthalate (PET) is widely used material and as such became highly enriched in nature. It is generally considered inert and safe plastic, but due to the recent increased efforts to break-down PET using biotechnological approaches, we realized the scarcity of information about structural analysis of possible degradation products and their ecotoxicological assessment. Therefore, in this study, 11 compounds belonging to the group of PET precursors and possible degradation products have been comprehensively characterized.
View Article and Find Full Text PDFPolychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs), that can be detected in a variety of environments including the human body, adversely affecting global health. Bioremediation is an emerging field for the detoxification and removal of environmental pollutants, with novel biocatalysts appropriate for this task being in high demand. In this study, a biobank of novel fungal strains isolated as symbionts of marine invertebrates was screened for their ability to remove 2,4,5-trichlorobiphenyl (PCB29).
View Article and Find Full Text PDF2,4-Dichlorophenol (2,4-DCP) is a ubiquitous environmental pollutant categorized as a priority pollutant by the United States (US) Environmental Protection Agency, posing adverse health effects on humans and wildlife. Bioremediation is proposed as an eco-friendly, cost-effective alternative to traditional physicochemical remediation techniques. In the present study, fungal strains were isolated from marine invertebrates and tested for their ability to biotransform 2,4-DCP at a concentration of 1 mM.
View Article and Find Full Text PDFWe report the 28-Mbp draft genome sequence of the marine fungus sp. strain TM138. The species was isolated from the marine invertebrate Its genome sequence will inform future investigations into the species' enzymatic potential for bioremediation and its evolution in marine environments.
View Article and Find Full Text PDFChlorophenols (CPs) are environmental pollutants that are produced through various anthropogenic activities and introduced in the environment. Living organisms, including humans, are exposed to these toxic xenobiotics and suffer from adverse health effects. More specifically, 2,4-dichlorophenol (2,4-DCP) is released in high amounts in the environment and has been listed as a priority pollutant by the US Environmental Protection Agency.
View Article and Find Full Text PDFPolyphenol oxidases (PPOs) have been mostly associated with the undesirable postharvest browning in fruits and vegetables and have implications in human melanogenesis. Nonetheless, they are considered useful biocatalysts in the food, pharmaceutical, and cosmetic industries. The aim of the present work was to characterize a novel PPO and explore its potential as a bioremediation agent.
View Article and Find Full Text PDFOleuropein, a bioactive compound found in all parts of olive tree, especially in leaves and branches, presents numerous health promoting properties that increase research and market interest the last few years. In addition, oleuropein degradation products, such as hydroxytyrosol, elenolic acid, and the aglycones also exhibit biological activities with different properties compared to the starting compound. Under this view, a commercial lipase preparation Lipolase 100L and a thermophilic β-glucosidase from Myceliophthora thermophila were used for the regioselective hydrolysis of oleuropein towards the production of the corresponding biologically active compounds.
View Article and Find Full Text PDFIn the present study, the immobilization of a cutinase from Fusarium oxysporum was carried out as cross-linked enzyme aggregates. Under optimal immobilization conditions, acetonitrile was selected as precipitant, utilizing 9.4 mg protein/mL and 10 mM glutaraldehyde as cross-linker.
View Article and Find Full Text PDFThe aim of the present review is to highlight the potential use of marine biocatalysts (whole cells or enzymes) as an alternative bioprocess for the degradation of aromatic pollutants. Firstly, information about the characteristics of the still underexplored marine environment and the available scientific tools used to access novel marine-derived biocatalysts is provided. Marine-derived enzymes, such as dioxygenases and dehalogenases, and the involved catalytic mechanisms for the degradation of aromatic and halogenated compounds, are presented, with the purpose of underpinning their potential use in bioremediation.
View Article and Find Full Text PDFA cutinase from the mesophilic fungus Fusarium oxysporum (FoCut5a) was functionally expressed in different hosts and their recombinant products were characterized regarding their activity, thermostability and tolerance in organic solvents. The cutinase gene cut5a was expressed in the BL21 and Origami 2 Escherichia coli strains and the resulting protein was folded either in the cytoplasm or in the periplasmic space, with the aim of correct formation of disulfide bonds. Increase of thermostability occurred when the enzyme was expressed in the oxidative cytoplasm of Origami 2.
View Article and Find Full Text PDF