After the breakthroughs of Transformer networks in Natural Language Processing (NLP) tasks, they have led to exciting progress in visual tasks as well. Nonetheless, there has been a parallel growth in the number of parameters and the amount of training data, which led to the conclusion that Transformers are not suited for small datasets. This paper is the first to convey the feasibility of Compact Convolutional Transformers (CCT) for the prediction of Parkinsonian postural tremor based on the Bispectrum (BS) representation of IMU accelerometer time series.
View Article and Find Full Text PDFEmotion recognition in conversations using artificial intelligence (AI) has recently gained a lot of attention, as it can provide additional emotion cues that can be correlated with human social behavior. An extension towards an AI-based emotional climate (EC) recognition, i.e.
View Article and Find Full Text PDFAttention Deficit/Hyperactivity Disorder (ADHD) is a common neurodevelopmental disorder mainly affecting children. ADHD children brain activity is reported to present alterations from neurotypically developed children, yet establishment of an EEG biomarker, which is of high importance in clinical practice and research, has not been achieved. In this work, task-related EEG recordings from 61 ADHD and 60 age-matched non-ADHD children are analyzed to examine the underlying Cross-Frequency Coupling phenomena.
View Article and Find Full Text PDF