Murine intraepithelial γδ T cells include distinct tissue-protective cells selected by epithelial butyrophilin-like (BTNL) heteromers. To determine whether this biology is conserved in humans, we characterized the colonic γδ T cell compartment, identifying a diverse repertoire that includes a phenotypically distinct subset coexpressing T cell receptor Vγ4 and the epithelium-binding integrin CD103. This subset was disproportionately diminished and dysregulated in inflammatory bowel disease, whereas on-treatment CD103γδ T cell restoration was associated with sustained inflammatory bowel disease remission.
View Article and Find Full Text PDFA Correction to this paper has been published: https://doi.org/10.1038/s41591-020-01186-5.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFImproved understanding and management of COVID-19, a potentially life-threatening disease, could greatly reduce the threat posed by its etiologic agent, SARS-CoV-2. Toward this end, we have identified a core peripheral blood immune signature across 63 hospital-treated patients with COVID-19 who were otherwise highly heterogeneous. The signature includes discrete changes in B and myelomonocytic cell composition, profoundly altered T cell phenotypes, selective cytokine/chemokine upregulation and SARS-CoV-2-specific antibodies.
View Article and Find Full Text PDFAlthough T cell receptor (TCR)gammadelta+ and TCRalphabeta+ cells are commonly viewed as functionally independent, their relatedness and potential interdependence remain enigmatic. Here we have identified a gene profile that distinguishes mouse gammadelta cell populations from conventional alphabeta T cells. However, this profile was also expressed by sets of unconventional alphabeta T cells.
View Article and Find Full Text PDFThe intraepithelial lymphocyte (IEL) network of T-cell receptor gammadelta+ (Vgamma5+) dendritic epidermal T cells (DETC) in murine skin down-regulates cutaneous inflammation, although the mechanism is unknown. Thymosin-beta4 (Tbeta4), identified by serial analysis of gene expression as a predominant transcript in gut IEL, encodes both a ubiquitous actin-binding protein (UTbeta4) with demonstrated capacity to inhibit neutrophilic infiltration, and a splice-variant limited to lymphoid tissue (LTbeta4) with unknown bioactivity. Freshly isolated Vgamma5+ DETCs expressed both forms, while only LTbeta4 was preferentially up-regulated after cellular activation in vitro.
View Article and Find Full Text PDF