Publications by authors named "Efren Mezura-Montes"

Breast cancer (BC) has become a global health problem, ranking first in incidence and fifth in mortality in women around the world. Although there are some diagnostic methods for the disease, these are not sufficiently effective and are invasive. In this work, we discriminated between patients without breast pathology (BP), with benign BP, and with BC based on the band patterns obtained from Western blot strip images of the autoantibody response to antigens of the T47D tumor line using and comparing supervised machine learning techniques to have a sensitive and accurate method.

View Article and Find Full Text PDF

The enhanced multi-objective symbolic discretization for time series () uses an evolutionary process to identify the appropriate discretization scheme in the Time Series Classification (TSC) task. It discretizes using a unique alphabet cut for each word segment. However, this kind of scheme has a higher computational cost.

View Article and Find Full Text PDF

is a complex phenomenon that impacts human activities and the environment. For this reason, predicting its behavior is crucial to mitigating such effects. Deep learning techniques are emerging as a powerful tool for this task.

View Article and Find Full Text PDF

Mixed integer nonlinear programming (MINLP) addresses optimization problems that involve continuous and discrete/integer decision variables, as well as nonlinear functions. These problems often exhibit multiple discontinuous feasible parts due to the presence of integer variables. Discontinuous feasible parts can be analyzed as subproblems, some of which may be highly constrained.

View Article and Find Full Text PDF

This article presents a study, intending to design a model with 90% reliability, which helps in the prediction of school dropouts in higher and secondary education institutions, implementing machine learning techniques. The collection of information was carried out with open data from the 2015 Intercensal Survey and the 2010 and 2020 Population and Housing censuses carried out by the National Institute of Statistics and Geography, which contain information about the inhabitants and homes. in the 32 federal entities of Mexico.

View Article and Find Full Text PDF

This paper proposes the tuning approach of the event-triggered controller (ETCTA) for the robotic system stabilization task where the reduction of the stabilization error and the data broadcasting of the control update are simultaneously considered. This approach is stated as a dynamic optimization problem, and the best controller parameters are obtained by using fourteen different bio-inspired optimization algorithms. The statistics results reveal that, among the tested bio-inspired optimization algorithms, the most reliable algorithm in the proposed tuning problem is the differential evolution variant DE/Best/1/Exp.

View Article and Find Full Text PDF

The identification of subnetworks of interest-or active modules-by integrating biological networks with molecular profiles is a key resource to inform on the processes perturbed in different cellular conditions. We here propose MOGAMUN, a Multi-Objective Genetic Algorithm to identify active modules in MUltiplex biological Networks. MOGAMUN optimizes both the density of interactions and the scores of the nodes (e.

View Article and Find Full Text PDF

An essential aspect in the interaction between people and computers is the recognition of facial expressions. A key issue in this process is to select relevant features to classify facial expressions accurately. This study examines the selection of optimal geometric features to classify six basic facial expressions: happiness, sadness, surprise, fear, anger, and disgust.

View Article and Find Full Text PDF

The efficient speed regulation of four-bar mechanisms is required for many industrial processes. These mechanisms are hard to control due to the highly nonlinear behavior and the presence of uncertainties or disturbances. In this paper, different Pareto-front approximation search approaches in the adaptive controller tuning based on online multiobjective metaheuristic optimization are studied through their application in the four-bar mechanism speed regulation problem.

View Article and Find Full Text PDF

This paper presents two-swim operators to be added to the chemotaxis process of the modified bacterial foraging optimization algorithm to solve three instances of the synthesis of four-bar planar mechanisms. One swim favors exploration while the second one promotes fine movements in the neighborhood of each bacterium. The combined effect of the new operators looks to increase the production of better solutions during the search.

View Article and Find Full Text PDF

The bias-variance dilemma is a well-known and important problem in Machine Learning. It basically relates the generalization capability (goodness of fit) of a learning method to its corresponding complexity. When we have enough data at hand, it is possible to use these data in such a way so as to minimize overfitting (the risk of selecting a complex model that generalizes poorly).

View Article and Find Full Text PDF

In this work, we present a novel application of time series discretization using evolutionary programming for the classification of precancerous cervical lesions. The approach optimizes the number of intervals in which the length and amplitude of the time series should be compressed, preserving the important information for classification purposes. Using evolutionary programming, the search for a good discretization scheme is guided by a cost function which considers three criteria: the entropy regarding the classification, the complexity measured as the number of different strings needed to represent the complete data set, and the compression rate assessed as the length of the discrete representation.

View Article and Find Full Text PDF
Article Synopsis
  • - A new method for aligning image sequences from colposcopy exams to detect cervical precancerous lesions is introduced, focusing on analyzing pixel time series and dividing images into smaller windows for better comparison.
  • - The method involves searching for the most similar window in each image by calculating an "affinity" value through polynomial approximation, with the process bounded by a defined neighborhood around each window.
  • - Tests on ten real cases show that this method outperforms four existing registration techniques in terms of accuracy and processing time, highlighting its effectiveness for medical image analysis.
View Article and Find Full Text PDF

Breast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages.

View Article and Find Full Text PDF