Publications by authors named "Efrem Curcio"

Modern society and industrial development rely heavily on the availability of freshwater and minerals. Seawater reverse osmosis (SWRO) has been widely adopted for freshwater supply, although many questions have arisen about its environmental sustainability owing to the disposal of hypersaline rejected solutions (brine). This scenario has accelerated significant developments towards the hybridization of SWRO with membrane distillation-crystallization (MD-MCr), which can extract water and minerals from spent brine.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are commonly used biologic drugs for the treatment of diseases such as rheumatoid arthritis, multiple sclerosis, COVID-19 and various cancers. They are produced in Chinese hamster ovary cell lines and are purified via a number of complex and expensive chromatography-based steps, operated in batch mode, that rely heavily on protein A resin. The major drawback of conventional procedures is the high cost of the adsorption media and the extensive use of chemicals for the regeneration of the chromatographic columns, with an environmental cost.

View Article and Find Full Text PDF

The control of heat at the nanoscale via the excitation of localized surface plasmons in nanoparticles (NPs) irradiated with light holds great potential in several fields (cancer therapy, catalysis, desalination). To date, most thermoplasmonic applications are based on Ag and Au NPs, whose cost of raw materials inevitably limits the scalability for industrial applications requiring large amounts of photothermal NPs, as in the case of desalination plants. On the other hand, alternative nanomaterials proposed so far exhibit severe restrictions associated with the insufficient photothermal efficacy in the visible, the poor chemical stability, and the challenging scalability.

View Article and Find Full Text PDF

Freshwater scarcity is a vital societal challenge related to climate change, population pressure, and agricultural and industrial demands. Therefore, sustainable desalination/purification of salty/contaminated water for human uses is particularly relevant. Membrane distillation is an emerging hybrid thermal-membrane technology with the potential to overcome the drawbacks of conventional desalination by a synergic exploitation of the water-energy nexus.

View Article and Find Full Text PDF

Membrane-based photothermal crystallization - a pioneering technology for mining valuable minerals from seawater and brines - exploits self-heating nanostructured interfaces to boost water evaporation, so achieving a controlled supersaturation environment that promotes the nucleation and growth of salts. This work explores, for the first time, the use of two-dimensional graphene thin films (2D-G) and three dimensional vertically orientated graphene sheet arrays (3D-G) as potential photothermal membranes applied to the dehydration of sodium chloride, potassium chloride and magnesium sulfate hypersaline solutions, followed by salt crystallization. A systematic study sheds light on the role of vertical alignment of graphene sheets on the interfacial, light absorption and photothermal characteristics of the membrane, impacting on the water evaporation rate and on the crystal size distribution of the investigated salts.

View Article and Find Full Text PDF

As a result of climate change, population increase and improvement of living standards, the water demand is annually growing drawing worldwide attention on seawater desalination to face water crisis. The total global desalination capacity is dominated by Reverse Osmosis (RO) and, often, this desalination process is fed with the brackish water extracted from coastal aquifers. After this process the desalted freshwater is obtained at a recovery factor of ca.

View Article and Find Full Text PDF

In this study, novel asymmetric integral cation exchange membranes were prepared by the wet phase inversion of sulfonated polysulfone (SPSf) solutions. SPSf with different degrees of sulfonation (DS) was synthesized by variation in the amount of chlorosulfonic acid utilized as a sulfonating agent. The characterization of SPSf samples was performed using FTIR and H-NMR techniques.

View Article and Find Full Text PDF

Ion exchange membranes (IEMs) have consolidated applications in energy conversion and storage systems, like fuel cells and battery separators. Moreover, in the perspective to address the global need for non-carbon-based and renewable energies, salinity-gradient power (SGP) harvesting by reverse electrodialysis (RED) is attracting significant interest in recent years. In particular, brine solutions produced in desalination plants can be used as concentrated streams in a SGP-RED stack, providing a smart solution to the problem of brine disposal.

View Article and Find Full Text PDF

The crystallization of Anti-CD20, a full-length monoclonal antibody, has been studied in the PEG400/NaSO/Water system near Liquid-Liquid Phase Separation (LLPS) conditions by both sitting-drop vapour diffusion and batch methods. In order to understand the Anti-CD20 crystallization propensity in the solvent system of different compositions, we investigated some measurable parameters, normally used to assess protein conformational and colloidal stability in solution, with the aim to understand the aggregation mechanism of this complex biomacromolecule. We propose that under crystallization conditions a minor population of specifically aggregated protein molecules are present.

View Article and Find Full Text PDF

To gain a better understanding of neurodegeneration mechanisms and for preclinical evaluation of new therapeutics more accurate models of neuronal tissue are required. Our strategy was based on the implementation of advanced engineered system, like membrane bioreactor, in which neurons were cultured in the extracapillary space of poly(l-lactic acid) (PLLA) microtube array (MTA) membranes within a dynamic device designed to recapitulate specific microenvironment of living neuronal tissue. The high membrane permeability and the optimized fluid dynamic conditions created by PLLA-MTA membrane bioreactor provide a 3D low-shear stress environment fully controlled at molecular level with enhanced diffusion of nutrients and waste removal that successfully develops neuronal-like tissue.

View Article and Find Full Text PDF

Thermoplasmonic effects notably improve the efficiency of vacuum membrane distillation, an economically sustainable tool for high-quality seawater desalination. Poly(vinylidene fluoride) (PVDF) membranes filled with spherical silver nanoparticles are used, whose size is tuned for the aim. With the addition of plasmonic nanoparticles in the membrane, the transmembrane flux increases by 11 times, and, moreover, the temperature at the membrane interface is higher than bulk temperature.

View Article and Find Full Text PDF

Hydrogel composite membranes (HCMs) are used as novel mineralization platforms for the bioinspired synthesis of CaCO3 superstructures. A comprehensive statistical analysis of the experimental results reveals quantitative relationships between crystallization conditions and crystal texture and a strong selectivity toward complex morphologies when monomers bearing carboxyl and hydroxyl groups are used together in the hydrogel layer synthesis in HCMs.

View Article and Find Full Text PDF

Synthetic polymer scaffold seeded with autologous cells have a clinical translational potential. A rational design oriented to clinical applications must ensure an efficient mass transfer of nutrients as a function of specific metabolic rates, especially for precariously vascularized tissues grown in vitro or integrated in vivo. In this work, luminescence lifetime-based sensors were used to provide accurate, extensive and non-invasive measurements of the oxygen uptake rate for human mesenchymal stem cells (hMSCs), tracheal epithelial cells (hTEpiCs) and human chondrocytes (hCCs) within a range of 2-40% O2 partial pressure.

View Article and Find Full Text PDF

In this work we studied glycine crystallization with two main objectives: (i) to get improved control of crystal growth and polymorphic selectivity of organic molecules; (ii) to achieve additional insights into the nucleation mechanisms of glycine polymorphs. To reach these goals, membrane crystallization technology, a tool which allows improved control of supersaturation in solution crystallization, was used under different operating conditions: the variable solvent removal rate, acidic and almost neutral pH, the presence of a pulsed electric field. The traditional explanation for the crystallization of α and γ glycine polymorphs from aqueous solution is based on the general cyclic dimer hypothesis and the self-poisoning mechanism.

View Article and Find Full Text PDF

Peripheral blood lymphocytes isolated from healthy human donors' buffy coat were cultured in membrane bio-reactors (MBR) designed in two different configurations: a conventional hollow-fiber (HF) bundle of modified polyetheretherketone (PEEK-WC) arranged in parallel, and a cross-assembled PEEK-WC and polyethersulfone (PES) HF membranes having different structural properties. Both bioreactors were experimentally compared in terms of metabolic activity of cultured cells, monitored over 8 days with respect to glucose uptake rate (GUR) and lactate production rate (LPR), and mathematically modelled by Computational Fluid Dynamics (CFD) method in order to investigate the impact of geometrical configuration and transport properties of biomaterials. The almost uniform trend of GUR from day 2 to day 7 (average of 0.

View Article and Find Full Text PDF

Metropolis Monte Carlo (MC) algorithm of the two-dimensional Ising model is used to study the heterogeneous nucleation of protein crystals on rough polymeric surfaces. The theoretical findings are compared to those obtained from classical nucleation theory (CNT), and to experimental data from protein model hen egg white lysozyme (HEWL) crystallized on poly(vinylidene fluoride) or PVDF, poly(dimethylsiloxane) or PDMS and Hyflon homemade membranes. The reduction of the activation energy for the nucleation process on polymeric membranes, predicted to occur at increasing surface roughness, results in a nucleation kinetics that is many orders of magnitude faster than in homogeneous phase.

View Article and Find Full Text PDF

On June 2008, the first human tissue-engineered trachea replacement was performed using decellularized (de-antigenised) cadaveric donor trachea, seeded with recipient epithelial cells on the internal surface of the graft and mesenchymal stem-cell-derived chondrocytes on the external. During the follow-up, cytological analysis at 4 postoperative days showed a migration of the stem-cells derived chondrocytes from the outer to the inner surface of the first 2 cm of the graft length. With the aim to rationalize these clinical findings, and under the hypothesis that cellular migration is driven by the oxygen gradients developing from the external part of the construct (exposed to O(2) deficiency) towards the better oxygenated epithelial region, an accurate computational model of oxygen transport in the trachea engineered construct was developed and solved using finite element method (FEM).

View Article and Find Full Text PDF
Article Synopsis
  • The article presents a modified membrane crystallization technique that utilizes a membrane to control the composition of solvent and antisolvent, promoting supersaturation for drug crystallization.
  • Two configurations are discussed: one removes the solvent faster than the antisolvent to induce phase inversion, while the other adds antisolvent to the drug solution, both relying on vapor phase migration through the membrane.
  • Tests with paracetamol and glycine showed that this approach allows precise control over the crystallization environment, leading to better control of crystal morphology.
View Article and Find Full Text PDF

An important challenge in liver tissue engineering is the development of bioartificial systems that are able to favour the liver reconstruction and to modulate liver cell behaviour. A crossed hollow fiber membrane bioreactor was developed to support the long-term maintenance and differentiation of human hepatocytes. The bioreactor consists of two types of hollow fiber (HF) membranes with different molecular weight cut-off (MWCO) and physico-chemical properties cross-assembled in alternating manner: modified polyetheretherketone (PEEK-WC) and polyethersulfone (PES), used for the medium inflow and outflow, respectively.

View Article and Find Full Text PDF

Isolated hepatocytes in spheroid configuration exhibit a high degree of cell-cell contacts, which are important in the maintenance of viability and liver specific functions. In the absence of a vascular network, the cells in a large spheroid size experience mass transfer limitations of metabolites and oxygen in the core of aggregates. In this paper transport phenomena related to the diffusion and reaction of oxygen, glucose and lactate are mathematically described and experimentally verified for hepatocyte spheroids cultured in a rotating-wall polystyrene system (RWPS) not permeable for gases and in a rotating-wall membrane system (RWMS) with oxygen-permeable membrane.

View Article and Find Full Text PDF

This paper reports on human hepatocytes cultured in a galactosylated membrane bioreactor in order to explore the modulation of the effects of a pro-inflammatory cytokine, Interleukin-6 (IL-6) on the liver cells at molecular level. In particular the role of IL-6 on gene expression and production of a glycoprotein, fetuin-A produced by hepatocytes, was investigated by culturing hepatocytes in the membrane bioreactor, both in the absence and presence of IL-6 (300 pg/ml). IL-6 modulated the fetuin-A gene expression, synthesis and release by primary human hepatocytes cultured in the bioreactor.

View Article and Find Full Text PDF

In this study, the influence of the morphological parameters of microporous poly(vinylidene fluoride) (PVDF) membranes on the heterogeneous nucleation rate of hen egg white lysozyme (HEWL) crystals has been investigated. Experiments have been carried out on membranes prepared by non-solvent-induced phase inversion method, using PVDF-co-hexafluoropropylene (Kynarflex 2800) and PVDF homopolymer (Kinar 460), and adding LiCl and poly(vinylpyrrolidone) (PVP) in order to modulate the pore structure. From a theoretical point of view, the free Gibbs energy balance for the formation of a critical nucleus has been adapted to nonporous surfaces, thus obtaining a mathematical correlation between the energy nucleation barrier, the membrane porosity, and the contact angle between protein solution and polymeric substrate.

View Article and Find Full Text PDF

To grow protein crystals is not an easy task; moreover, if we need to grow protein crystals with controlled shape, size, and size distribution, depending on their application, the mission becomes even harder. Membrane crystallization has been recognized as an interesting tool for growing protein crystals with enhanced crystallization kinetics, both in static and in forced solution flow configuration, without detrimental effects on crystal quality. In the present work, we have studied the membrane crystallization process of benzamidine inhibited trypsin from bovine pancreas (BPT), with ammonium sulphate (dissolved in Tris-HCl buffer, 0.

View Article and Find Full Text PDF