Publications by authors named "Efiyenia Kaparos"

LINE-1 retrotransposons are sequences capable of copying themselves to new genomic loci via an RNA intermediate. New studies implicate LINE-1 in a range of diseases, especially in the context of aging, but without an accurate understanding of where and when LINE-1 is expressed, a full accounting of its role in health and disease is not possible. We therefore developed a method-5' scL1seq-that makes use of a widely available library preparation method (10x Genomics 5' single cell RNA-seq) to measure LINE-1 expression in tens of thousands of single cells.

View Article and Find Full Text PDF

STAT3 mutations, predominantly in the DNA-binding domain (DBD) and Src-homology 2 domain (SH2D), cause rare cases of immunodeficiency, malignancy, and autoimmunity. The exact mechanisms by which these mutations abrogate or enhance STAT3 function are not completely understood. Here, we examined how loss-of-function (LOF) and gain-of-function (GOF) STAT3 mutations within the DBD and SH2D affect monomer and homodimer protein stability as well as their effect on key STAT3 activation events, including recruitment to phosphotyrosine (pY) sites within peptide hormone receptors, tyrosine phosphorylation at Y705, dimerization, nuclear translocation, and DNA binding.

View Article and Find Full Text PDF

Knowledge of fundamental differences between breast cancer subtypes has driven therapeutic advances; however, basal-like breast cancer (BLBC) remains clinically intractable. Because BLBC exhibits alterations in DNA repair enzymes and cell-cycle checkpoints, elucidation of factors enabling the genomic instability present in this subtype has the potential to reveal novel anti-cancer strategies. Here, we demonstrate that BLBC is especially sensitive to suppression of iron-sulfur cluster (ISC) biosynthesis and identify DNA polymerase epsilon (POLE) as an ISC-containing protein that underlies this phenotype.

View Article and Find Full Text PDF

DNA double-stranded breaks (DSBs) are dangerous lesions threatening genomic stability. Fidelity of DSB repair is best achieved by recombination with a homologous template sequence. In yeast, transcript RNA was shown to template DSB repair of DNA.

View Article and Find Full Text PDF