Publications by authors named "Efim B Rozenbaum"

The majority of classical dynamical systems are chaotic and exhibit the butterfly effect: a minute change in initial conditions has exponentially large effects later on. But this phenomenon is difficult to reconcile with quantum mechanics. One of the main goals in the field of quantum chaos is to establish a correspondence between the dynamics of classical chaotic systems and their quantum counterparts.

View Article and Find Full Text PDF

The kicked rotor system is a textbook example of how classical and quantum dynamics can drastically differ. The energy of a classical particle confined to a ring and kicked periodically will increase linearly in time whereas in the quantum version the energy saturates after a finite number of kicks. The quantum system undergoes Anderson localization in angular-momentum space.

View Article and Find Full Text PDF

It was proposed recently that the out-of-time-ordered four-point correlator (OTOC) may serve as a useful characteristic of quantum-chaotic behavior, because, in the semiclassical limit ℏ→0, its rate of exponential growth resembles the classical Lyapunov exponent. Here, we calculate the four-point correlator C(t) for the classical and quantum kicked rotor-a textbook driven chaotic system-and compare its growth rate at initial times with the standard definition of the classical Lyapunov exponent. Using both quantum and classical arguments, we show that the OTOC's growth rate and the Lyapunov exponent are, in general, distinct quantities, corresponding to the logarithm of the phase-space averaged divergence rate of classical trajectories and to the phase-space average of the logarithm, respectively.

View Article and Find Full Text PDF