Antimicrobial peptides (AMPs) are promising candidates for new antibiotics due to their broad-spectrum activity against pathogens and reduced susceptibility to resistance development. Deep-learning techniques, such as deep generative models, offer a promising avenue to expedite the discovery and optimization of AMPs. A remarkable example is the Feedback Generative Adversarial Network (FBGAN), a deep generative model that incorporates a classifier during its training phase.
View Article and Find Full Text PDFMotivation: Protein structural class prediction is one of the most significant problems in bioinformatics, as it has a prominent role in understanding the function and evolution of proteins. Designing a computationally efficient but at the same time accurate prediction method remains a pressing issue, especially for sequences that we cannot obtain a sufficient amount of homologous information from existing protein sequence databases. Several studies demonstrate the potential of utilizing chaos game representation along with time series analysis tools such as recurrence quantification analysis, complex networks, horizontal visibility graphs (HVG) and others.
View Article and Find Full Text PDFIEEE Trans Image Process
September 2021
This paper introduces a novel coding/decoding mechanism that mimics one of the most important properties of the human visual system: its ability to enhance the visual perception quality in time. In other words, the brain takes advantage of time to process and clarify the details of the visual scene. This characteristic is yet to be considered by the state-of-the-art quantization mechanisms that process the visual information regardless the duration of time it appears in the visual scene.
View Article and Find Full Text PDFThis paper introduces a novel filter, which is inspired by the human retina. The human retina consists of three different layers: the Outer Plexiform Layer (OPL), the inner plexiform layer, and the ganglionic layer. Our inspiration is the linear transform which takes place in the OPL and has been mathematically described by the neuroscientific model "virtual retina.
View Article and Find Full Text PDF