A GaSb-based SEmiconductor Saturable Absorber Mirror (SESAM) enables continuous-wave picosecond mode-locked operation with excellent stability of a polarization-maintaining mid-infrared Er:ZBLAN fiber laser. The GaSb-based SESAM mode-locked fiber laser delivers an average output power of 190 mW at 2.76 µm at a repetition rate of 32.
View Article and Find Full Text PDFWe report the optical properties of GaSbBi layers grown on GaSb (100) substrates with different bismuth contents of 5.8 and 8.0% Bi.
View Article and Find Full Text PDFTunable lasers emitting in the 2-3 µm wavelength range that are compatible with photonic integration platforms are of great interest for sensing applications. To this end, combining GaSb-based semiconductor gain chips with SiN photonic integrated circuits offers an attractive platform. Herein, we utilize the low-loss features of SiN waveguides and demonstrate a hybrid laser comprising a GaSb gain chip with an integrated tunable SiN Vernier mirror.
View Article and Find Full Text PDFThe development of integrated photonics experiences an unprecedented growth dynamic, owing to accelerated penetration to new applications. This leads to new requirements in terms of functionality, with the most obvious feature being the increased need for wavelength versatility. To this end, we demonstrate for the first time the flip-chip integration of a GaSb semiconductor optical amplifier with a silicon photonic circuit, addressing the transition of photonic integration technology towards mid-IR wavelengths.
View Article and Find Full Text PDFCathodoluminescence mapping is used as a contactless method to probe the electron concentration gradient of Te-doped GaAs nanowires. The room temperature and low temperature (10 K) cathodoluminescence analysis method previously developed for GaAs:Si is first validated on five GaAs:Te thin film samples, before extending it to the two GaAs:Te NW samples. We evidence an electron concentration gradient ranging from below 1 × 10cmto 3.
View Article and Find Full Text PDFHybridization of semiconductor nanostructures with asymmetric metallic layers offers new paths to circular polarization control and chiral properties. Here we study, both experimentally and numerically, chiral properties of GaAs-based nanowires (NWs) which have two out of six sidewalls covered by Au. Sparse ensembles of vertical, free-standing NWs were fabricated by means of lithography-free self-assembled technique on Si substrates and subsequently covered by Au using tilted evaporation.
View Article and Find Full Text PDFSeveral passivation techniques are developed and compared in terms of their ability to preserve the optical properties of close-to-surface InAs/GaAs quantum dots (QDs). In particular, the influence of N-passivation by hydrazine chemical treatment, N-passivation by hydrazine followed by atomic layer deposition (ALD) of AlO and use of AlN deposited by plasma-enhanced ALD are reported. The effectiveness of the passivation is benchmarked by measuring the emission linewidths and decay rates of photo-carriers for the near-surface QDs.
View Article and Find Full Text PDFPrecise control and broad tunability of the growth parameters are essential in engineering the optical and electrical properties of semiconductor nanowires (NWs) to make them suitable for practical applications. To this end, we report the effect of As species, namely As and As, on the growth of self-catalyzed GaAs based NWs. The role of As species is further studied in the presence of Te as n-type dopant in GaAs NWs and Sb as an additional group V element to form GaAsSb NWs.
View Article and Find Full Text PDFOptical circular dichroism (CD) is an important phenomenon in nanophotonics, that addresses top level applications such as circular polarized photon generation in optics, enantiomeric recognition in biophotonics and so on. Chiral nanostructures can lead to high CD, but the fabrication process usually requires a large effort, and extrinsic chiral samples can be produced by simpler techniques. Glancing angle deposition of gold on GaAs nanowires can (NWs) induces a symmetry breaking that leads to an optical CD response that mimics chiral behavior.
View Article and Find Full Text PDFThe performance of Ohmic contacts applied to semiconductor nanowires (NWs) is an important aspect for enabling their use in electronic or optoelectronic devices. Due to the small dimensions and specific surface orientation of NWs, the standard processing technology widely developed for planar heterostructures cannot be directly applied. Here, we report on the fabrication and optimization of Pt/Ti/Pt/Au Ohmic contacts for p-type GaAs nanowires grown by molecular beam epitaxy.
View Article and Find Full Text PDFEffective and controllable doping is instrumental for enabling the use of III-V semiconductor nanowires (NWs) in practical electronics and optoelectronics applications. To this end, dopants are incorporated during self-catalyzed growth via vapor-liquid-solid mechanism through the catalyst droplet or by vapor-solid mechanism of the sidewall growth. The interplay of these mechanisms together with the competition between axial elongation and radial growth of NWs can result in dopant concentration gradients along the NW axis.
View Article and Find Full Text PDFThe typical vapor-liquid-solid growth of nanowires is restricted to a vertical one-dimensional geometry, while there is a broad interest for more complex structures in the context of electronics and photonics applications. Controllable switching of the nanowire growth direction opens up new horizons in the bottom-up engineering of self-assembled nanostructures, for example, to fabricate interconnected nanowires used for quantum transport measurements. In this work, we demonstrate a robust and highly controllable method for deterministic switching of the growth direction of self-catalyzed GaAs nanowires.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2017
We report observations of field emission from self-catalyzed GaAs nanowires grown on Si (111). The measurements were taken inside a scanning electron microscope chamber with a nano-controlled tungsten tip functioning as anode. Experimental data were analyzed in the framework of the Fowler-Nordheim theory.
View Article and Find Full Text PDFHerein, we present experimental data on the record length uniformity within the ensembles of semiconductor nanowires. The length distributions of Ga-catalyzed GaAs nanowires obtained by cost-effective lithography-free technique on silicon substrates systematically feature a pronounced sub-Poissonian character. For example, nanowires with the mean length ⟨L⟩ of 2480 nm show a length distribution variance of only 367 nm, which is more than twice smaller than the Poisson variance h⟨L⟩ of 808 nm for this mean length (with h = 0.
View Article and Find Full Text PDFIII-V semiconductors nanowires (NW) have recently attracted a significant interest for their potential application in the development of high efficiency, highly-integrated photonic devices and in particular for the possibility to integrate direct bandgap materials with silicon-based devices. Here we report the absorbance properties of GaAs-AlGaAs-GaAs core-shell-supershell NWs using photo-acoustic spectroscopy (PAS) measurements in the spectral range from 300 nm to 1100 nm wavelengths. The NWs were fabricated by self-catalyzed growth on Si substrates and their dimensions (length ~5 μm, diameter ~140-150 nm) allow for the coupling of the incident light to the guided modes in near-infrared (IR) part of the spectrum.
View Article and Find Full Text PDFStructural analysis of self-catalyzed GaAs nanowires (NWs) grown on lithography-free oxide patterns is described with insight on their growth kinetics. Statistical analysis of templates and NWs in different phases of the growth reveals extremely high-dimensional uniformity due to a combination of uniform nucleation sites, lack of secondary nucleation of NWs, and self-regulated growth under the effect of nucleation antibunching. Consequently, we observed the first evidence of sub-Poissonian GaAs NW length distributions.
View Article and Find Full Text PDF