Absorbed radiation doses are essential in assessing the effects, e.g. safety and efficacy, of radiopharmaceutical therapy (RPT).
View Article and Find Full Text PDFBackground: Splenic switch-off (SSO) is a marker of adequate adenosine-induced vasodilatation on cardiac magnetic resonance perfusion imaging. We evaluate the feasibility of quantitative assessment of SSO in myocardial positron emission tomography (PET) perfusion imaging using [O]HO.
Methods: Thirty patients underwent [O]HO PET perfusion with adenosine stress.
Background: The segmentation of 3D cell nuclei is essential in many tasks, such as targeted molecular radiotherapies (MRT) for metastatic tumours, toxicity screening, and the observation of proliferating cells. In recent years, one popular method for automatic segmentation of nuclei has been deep learning enhanced marker-controlled watershed transform. In this method, convolutional neural networks (CNNs) have been used to create nuclei masks and markers, and the watershed algorithm for the instance segmentation.
View Article and Find Full Text PDFBackground: Transthyretin amyloidosis (ATTR) is a progressive disease which can be diagnosed non-invasively using bone avid [Tc]-labeled radiotracers. Thus, ATTR is also an occasional incidental finding on bone scintigraphy. In this study, we trained convolutional neural networks (CNN) to automatically detect and classify ATTR from scintigraphy images.
View Article and Find Full Text PDFThe recent advances in the production of engineered antibodies have facilitated the development and application of tailored, target-specific antibodies. Positron emission tomography (PET) of these antibody-based drug candidates can help to better understand their behavior. In this study, we report an proof-of-concept pretargeted immuno-PET study where we compare a pretargeting vs targeted approach using a new Zr-labeled tetrazine as a bio-orthogonal ligand in an inverse electron demand Diels-Alder (IEDDA) click reaction.
View Article and Find Full Text PDFPurpose: The intranasal (IN) administration of radiopharmaceuticals is of interest in being a viable route for the delivery of radiopharmaceuticals that do not ordinarily cross the blood-brain barrier (BBB). However, to be viable in a patient population, good image quality as well as safety of the administration should be demonstrated. This work provides radiation dosimetry calculations and simulations related to the radiation safety of performing such experiments in a human cohort.
View Article and Find Full Text PDFObjective: Brain dopamine transporter imaging with I-123-labeled radioligands is technically demanding due to the small size of the imaging target relative to the spatial resolution of most SPECT systems. In addition, I-123 has high-energy peaks which can penetrate or scatter in the collimator and be detected in the imaging energy window. The aim of this study was to implement Monte Carlo (MC)-based full collimator-detector response (CDR) compensation algorithm for I-123 into a third-party commercial SPECT reconstruction software package and to evaluate its effect on the quantitative accuracy of dopaminergic-image analysis compared to a method where only the geometric component of the CDR is compensated.
View Article and Find Full Text PDFObjectives: Myocardial SPECT/CT imaging is frequently performed to assess myocardial perfusion and dynamic parameters of heart function, such as ejection fraction (EF). However, potential pitfalls exist in the imaging chain that can unfavorably affect diagnosis and treatment. We performed a national cardiac quality control study to investigate how much SPECT/CT protocols vary between different nuclear medicine units in Finland, and how this may affect the heart perfusion and EF values.
View Article and Find Full Text PDFBackground: Computed tomography (CT) scans are routinely performed in positron emission tomography (PET) and single photon emission computed tomography (SPECT) examinations globally, yet few surveys have been conducted to gather national diagnostic reference level (NDRL) data for CT radiation doses in positron emission tomography/computed tomography (PET/CT) and single photon emission computed tomography/computed tomography (SPECT/CT). In this first Nordic-wide study of CT doses in hybrid imaging, Nordic NDRL CT doses are suggested for PET/CT and SPECT/CT examinations specific to the clinical purpose of CT, and the scope for optimisation is evaluated. Data on hybrid imaging CT exposures and clinical purpose of CT were gathered for 5 PET/CT and 8 SPECT/CT examinations via designed booklet.
View Article and Find Full Text PDFPreclinical tests of retinal drug responses are carried out in mice and rats, often after intravitreal injections. However, quantitative pharmacokinetics in the mouse eye is poorly understood. Ocular pharmacokinetics studies are usually done in rabbits.
View Article and Find Full Text PDFBackground: Post-therapy SPECT/CT imaging of Y microspheres delivered to hepatic malignancies is difficult, owing to the continuous, high-energy Bremsstrahlung spectrum emitted by Y. This study aimed to evaluate the utility of a commercially available software package (HybridRecon, Hermes Medical Solutions AB) which incorporates full Monte Carlo collimator modelling. Analysis of image quality was performed on both phantom and clinical images in order to ultimately provide a recommendation of an optimum reconstruction for post-therapy Y microsphere SPECT/CT imaging.
View Article and Find Full Text PDFAims: The goal of the investigation was to evaluate whether a semi-quantitative method reflecting myocardial 2-[18F]fluoro-2-deoxy-D-glucose (FDG) uptake heterogeneity has added value in addition to visual analysis in the diagnosis of cardiac sarcoidosis (CS).
Methods And Results: This retrospective analysis included 271 consecutive patients suspected of CS attending cardiac positron emission tomography combined with computed tomography (PET-CT) at our institution between 2007 and 2013. Visual analysis of PET-CT and semi-quantitative analysis of heterogeneity [coefficient of variation (CoV)] of myocardial FDG uptake were performed.
Purpose: Absorbed radiation dose-response relationships are not clear in molecular radiotherapy (MRT). Here, we propose a voxel-based dose calculation system for multicellular dosimetry in MRT. We applied confocal microscope images of a spherical cell aggregate i.
View Article and Find Full Text PDFBackground: Developments in single photon emission tomography instrumentation and reconstruction methods present a potential for decreasing acquisition times. One of such recent options for myocardial perfusion imaging (MPI) is IQ-SPECT. This study was motivated by the inconsistency in the reported ejection fraction (EF) and left ventricular (LV) volume results between IQ-SPECT and more conventional low-energy high-resolution (LEHR) collimation protocols.
View Article and Find Full Text PDFObjective: The aim of this work is to validate a software package called Hermes Internal Radiation Dosimetry (HIRD) for internal dose assessment tailored for clinical practice. The software includes all the necessary steps to perform voxel-level absorbed dose calculations including quantitative reconstruction, image coregistration and volume of interest tools.
Methods: The basics of voxel-level dosimetry methods and implementations to HIRD software are reviewed.
Background: Lu-octreotate is an effective treatment modality for patients with metastatic neuroendocrine tumors. The kidney is a critical dose-limiting organ in that modality. We investigated the absorbed doses in the kidney and compared whole kidney volume (WKV) and small (4 cm) volume of the kidney (SV) methods.
View Article and Find Full Text PDFReliable and reproducible quantification is essential in many clinical situations. Previously, single-photon emission computed tomography (SPECT) has not been considered a quantitative imaging modality, but recent advances in reconstruction algorithm development have made SPECT quantitative. In this study, we investigate the reproducibility of SPECT quantification with phantoms in a multicenter setting using novel third-party reconstruction software.
View Article and Find Full Text PDFBackground: In targeted radionuclide therapy (TRT), accurate quantification using SPECT/CT images is important for optimizing radiation dose delivered to both the tumour and healthy tissue. Quantitative SPECT images are regularly reconstructed using the ordered subset expectation maximization (OSEM) algorithm with various compensation methods such as attenuation (A), scatter (S) and detector and collimator response (R). In this study, different combinations of the compensation methods are applied during OSEM reconstruction and the effect on the (177)Lu quantification accuracy is studied in an anthropomorphic torso phantom.
View Article and Find Full Text PDFInt J Mol Imaging
February 2016
FDG-PET/CT is widely used to diagnose cardiac inflammation such as cardiac sarcoidosis. Physiological myocardial FDG uptake often creates a problem when assessing the possible pathological glucose metabolism of the heart. Several factors, such as fasting, blood glucose, and hormone levels, influence normal myocardial glucose metabolism.
View Article and Find Full Text PDFBackground: Iodine-123-β-CIT, a single-photon emission computed tomography (SPECT) ligand for dopamine transporters (DATs), has been used for in vivo studies in humans, monkeys, and rats but has not yet been used extensively in mice. To validate the imaging and analysis methods for preclinical DAT imaging, wild-type healthy mice were scanned using 123I-β-CIT.
Methods: The pharmacokinetics and reliability of 123I-β-CIT in mice (n = 8) were studied with a multipinhole SPECT/CT camera after intravenous injection of 123I-β-CIT (38 ± 3 MBq).
Purpose: In this work, accuracy of the mcnp5 code in the electron transport calculations and its suitability for ionization chamber (IC) response simulations in photon beams are studied in comparison to egsnrc and penelope codes.
Methods: The electron transport is studied by comparing the depth dose distributions in a water phantom subdivided into thin layers using incident energies (0.05, 0.
Objective: To describe the characteristics of activity bursts in the early preterm EEG, to assess inter-rater agreement of burst detection by visual inspection, and to determine the performance of an automated burst detector that uses non-linear energy operator (NLEO).
Methods: EEG recordings from extremely preterm (n=12) and very preterm (n=6) infants were analysed. Three neurophysiologists independently marked bursts in the EEG, the characteristics of bursts were analyzed and inter-rater agreement determined.