Background And Purpose: The 1.5 Tesla (T) Magnetic Resonance Linear Accelerator (MRL) provides an innovative modality for improved cardiac imaging when planning radiation treatment. No MRL based cardiac atlases currently exist, thus, we sought to comprehensively characterize cardiac substructures, including the conduction system, from cardiac images acquired using a 1.
View Article and Find Full Text PDFPurpose: MRI-guided adaptive radiation therapy (MRgART), particularly daily online adaptive replanning (OLAR) can substantially improve radiation therapy delivery, however, it can be labor-intensive and time-consuming. Currently, the decision to perform OLAR for a treatment fraction is determined subjectively. In this work, we develop a machine learning algorithm based on structural similarity index measure (SSIM) and change in entropy to quickly and objectively determine whether OLAR is necessary for a daily MRI set.
View Article and Find Full Text PDFIn recent years, multi-parametric magnetic resonance imaging (MpMRI) has played a major role in radiation therapy treatment planning. The superior soft tissue contrast, functional or physiological imaging capabilities, and the flexibility of site-specific image sequence development has placed MpMRI at the forefront. In this article, the present status of MpMRI for external beam radiation therapy planning is reviewed.
View Article and Find Full Text PDFPurpose: Substantial intrafraction organ motion during radiation therapy (RT) for pancreatic cancer is well recognized as a major limiting factor for accurate delivery of RT. The aim of this work is to determine the feasibility of monitoring the intrafractional motion of the pancreas or surrounding structures using ultrasound for RT delivery.
Methods: Transabdominal ultrasound (TAUS) and 4DCT data were acquired on ten pancreatic cancer patients during radiation therapy process in a prospective study.
Ultrasound elastography is envisioned as an optional modality to augment standard ultrasound B-mode imaging and is a promising technique to aid in detecting uterine masses which cause abnormal uterine bleeding in both pre- and post-menopausal women. In order to determine the effectiveness of strain imaging, mechanical testing to establish the elastic contrast between normal uterine tissue and stiffer masses such as leiomyomas (fibroids) and between softer pathologies such as uterine cancer and adenomyosis has to be performed. In this paper, we evaluate the stiffness of normal uterine tissue, leiomyomas, and endometrial cancers using a EnduraTEC ElectroForce (ELF) system.
View Article and Find Full Text PDFPurpose: Attenuation imaging has a promising role in the detection of tissue abnormalities. The authors have previously compared three different frequency domain ultrasound attenuation estimation methods, for accuracy and bias. The mean estimated attenuation value in a region of interest has been the determining factor of how well a method performs; however, the noise level has not been quantified for attenuation estimated using different methods.
View Article and Find Full Text PDFPurpose: Quantitative ultrasound based approaches such as attenuation slope estimation can be used to determine underlying tissue properties and eventually used as a supplemental diagnostic technique to B-mode imaging. The authors investigate the impact of backscatter intensity and frequency dependence variations on the attenuation slope estimation accuracy.
Methods: The authors compare three frequency domain based attenuation slope estimation algorithms, namely, a spectral difference method, the reference phantom method, and two spectral shift methods: a hybrid method and centroid downshift method.
In this article, we demonstrate the feasibility of saline infusion sonohysterography-based strain imaging for the determination of stiffness variations in uterine masses in vivo. Strain images are estimated using a 2-dimensional multilevel hybrid algorithm developed for sector array ultrasound transducers. Coarse displacements are initially estimated using envelope echo signals, followed by a guided finer displacement estimation using window lengths on the order of 6 wavelengths and 7 A-lines on radiofrequency data.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2008
Organic polymer semiconductors have unique electronic properties which make them attractive for use in microelectronic and optoelectronic devices fabricated using inexpensive manufacturing processes. In addition, novel chemical and biological sensors have been proposed which make use of the photophysical and electrical properties of conjugated polymer semiconducting films. The work described herein illustrates one such biosensing application by demonstrating successful immobilization of horseradish peroxidase enzyme onto a thin film of the semiconducting polymer MDMO-PPV.
View Article and Find Full Text PDF