Publications by authors named "Eelco van Kampen"

Our knowledge of galaxy formation and evolution has incredibly progressed through multi-wavelength observational constraints of the interstellar medium (ISM) of galaxies at all cosmic epochs. However, little is known about the physical properties of the more diffuse and lower surface brightness reservoir of gas and dust that extends beyond ISM scales and fills dark matter haloes of galaxies up to their virial radii, the circumgalactic medium (CGM). New theoretical studies increasingly stress the relevance of the latter for understanding the feedback and feeding mechanisms that shape galaxies across cosmic times, whose cumulative effects leave clear imprints into the CGM.

View Article and Find Full Text PDF

During the most active period of star formation in galaxies, which occurs in the redshift range 1 3, strong bursts of star formation result in significant quantities of dust, which obscures new stars being formed as their UV/optical light is absorbed and then re-emitted in the infrared, which redshifts into the mm/sub-mm bands for these early times. To get a complete picture of the high- galaxy population, we need to survey a large patch of the sky in the sub-mm with sufficient angular resolution to resolve all galaxies, but we also need the depth to fully sample their cosmic evolution, and therefore obtain their redshifts using direct mm spectroscopy with a very wide frequency coverage. This requires a large single-dish sub-mm telescope with fast mapping speeds at high sensitivity and angular resolution, a large bandwidth with good spectral resolution and multiplex spectroscopic capabilities.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are studying the multi-scale interstellar medium (ISM) of our Galaxy to understand the relationships between gas, dust, and star formation in Giant Molecular Clouds (GMCs).
  • The Milky Way's complex structure is influenced by massive stars and dust lanes, making it essential to observe these features at (sub-)millimeter wavelengths for in-depth analysis.
  • A proposed 50m single-dish sub-mm telescope called AtLAST aims to provide comprehensive observations of the Galactic Plane and surrounding areas to enhance our understanding of stellar formation, planetary system evolution, and the overall ecology of our Galaxy.
View Article and Find Full Text PDF

Observations at (sub-)millimeter wavelengths offer a complementary perspective on our Sun and other stars, offering significant insights into both the thermal and magnetic composition of their chromospheres. Despite the fundamental progress in (sub-)millimeter observations of the Sun, some important aspects require diagnostic capabilities that are not offered by existing observatories. In particular, simultaneously observations of the radiation continuum across an extended frequency range would facilitate the mapping of different layers and thus ultimately the 3D structure of the solar atmosphere.

View Article and Find Full Text PDF
Article Synopsis
  • Studying planets and small bodies in our Solar System helps us understand Earth's formation and evolution, as well as other planets.
  • Current observational methods face limitations that hinder progress in this field, particularly in areas like sensitivity and spatial coverage.
  • The proposed Atacama Large Aperture Submillimeter Telescope (AtLAST) aims to overcome these challenges by enabling detailed measurements of atmospheric dynamics, compositions of icy moon atmospheres, detection of important gases, and collaboration with interplanetary missions to enhance our understanding of planetary habitability.
View Article and Find Full Text PDF