Publications by authors named "Eelco Tromer"

Mitosis in eukaryotes involves reorganization of the nuclear envelope (NE) and microtubule-organizing centres (MTOCs). In , the causative agent of malaria, male gametogenesis mitosis is exceptionally rapid and divergent. Within 8 minutes, the haploid male gametocyte genome undergoes three replication cycles (1N to 8N), while maintaining an intact NE.

View Article and Find Full Text PDF

Understanding the origin of eukaryotic cells is one of the most difficult problems in all of biology. A key challenge relevant to the question of eukaryogenesis is reconstructing the gene repertoire of the last eukaryotic common ancestor (LECA). As data sets grow, sketching an accurate genomics-informed picture of early eukaryotic cellular complexity requires provision of analytical resources and a commitment to data sharing.

View Article and Find Full Text PDF

Unlabelled: Transmission of genetic material from one generation to the next is a fundamental feature of all living cells. In eukaryotes, a macromolecular complex called the kinetochore plays crucial roles during chromosome segregation by linking chromosomes to spindle microtubules. Little is known about this process in evolutionarily diverse protists.

View Article and Find Full Text PDF

Mitosis is an important process in the cell cycle required for cells to divide. Never in mitosis (NIMA)-like kinases (NEKs) are regulators of mitotic functions in diverse organisms. Plasmodium spp.

View Article and Find Full Text PDF

Faithful transmission of genetic material is crucial for the survival of all organisms. In many eukaryotes, a feedback control mechanism called the spindle checkpoint ensures chromosome segregation fidelity by delaying cell cycle progression until all chromosomes achieve proper attachment to the mitotic spindle. Kinetochores are the macromolecular complexes that act as the interface between chromosomes and spindle microtubules.

View Article and Find Full Text PDF

Eukaryotes have evolved towards one of two extremes along a spectrum of strategies for remodelling the nuclear envelope during cell division: disassembling the nuclear envelope in an open mitosis or constructing an intranuclear spindle in a closed mitosis. Both classes of mitotic remodelling involve key differences in the core division machinery but the evolutionary reasons for adopting a specific mechanism are unclear. Here we use an integrated comparative genomics and ultrastructural imaging approach to investigate mitotic strategies in Ichthyosporea, close relatives of animals and fungi.

View Article and Find Full Text PDF

The meiotic chromosome axis coordinates chromosome organization and interhomolog recombination in meiotic prophase and is essential for fertility. In S. cerevisiae, the HORMAD protein Hop1 mediates the enrichment of axis proteins at nucleosome-rich islands through a central chromatin-binding region (CBR).

View Article and Find Full Text PDF

Correct chromosome segregation during cell division depends on proper connections between spindle microtubules and kinetochores. During prometaphase, kinetochores are temporarily covered with a dense protein meshwork known as the fibrous corona. Formed by oligomerization of ROD/ZW10/ZWILCH-SPINDLY (RZZ-S) complexes, the fibrous corona promotes spindle assembly, chromosome orientation, and spindle checkpoint signaling.

View Article and Find Full Text PDF
Article Synopsis
  • The Aurora family of kinases is crucial for chromosome division and cell separation, relying on specific protein scaffolds for regulation, but the malaria-causing Plasmodium spp. have unique aurora-related kinases (ARK1-3) that operate without many typical scaffolds.
  • The study focuses on ARK2 in Plasmodium berghei's sexual reproduction, using advanced imaging and analysis techniques to demonstrate its role at spindle microtubules during cell division.
  • Key findings show that ARK2 and its interactors, like EB1, are important for non-traditional chromosome segregation, highlighting how the malaria parasite adapts its molecular mechanisms for survival and reproduction.
View Article and Find Full Text PDF

Meiosis is sexual cell division, a process in eukaryotes whereby haploid gametes are produced. Compared to canonical model eukaryotes, meiosis in apicomplexan parasites appears to diverge from the process with respect to the molecular mechanisms involved; the biology of Plasmodium meiosis, and its regulation by means of post-translational modification, are largely unexplored. Here, we discuss the impact of technological advances in cell biology, evolutionary bioinformatics, and genome-wide functional studies on our understanding of meiosis in the Apicomplexa.

View Article and Find Full Text PDF

African trypanosomes are dixenous eukaryotic parasites that impose a significant human and veterinary disease burden on sub-Saharan Africa. Diversity between species and life-cycle stages is concomitant with distinct host and tissue tropisms within this group. Here, the spatial proteomes of two African trypanosome species, Trypanosoma brucei and Trypanosoma congolense, are mapped across two life-stages.

View Article and Find Full Text PDF
Article Synopsis
  • Joint DNA molecules from DNA replication and repair can lead to ultrafine DNA bridges (UFBs) during mitosis, which hinder sister chromatid separation.
  • The study highlights the importance of PICH, a DNA translocase, in resolving UFBs and identifies FIRRM as a key regulator that interacts with FIGNL1, an ATPase involved in DNA processes.
  • Inhibition of FIRRM or FIGNL1 causes UFBs to form and disrupts RAD51 dynamics at replication forks, leading to DNA damage and reliance on PICH for cell survival.
View Article and Find Full Text PDF

Meiosis is usually described as 4 essential and sequential processes: (1) homolog pairing; (2) synapsis, mediated by the synaptonemal complex; (3) crossing over; and (4) segregation. In this canonical model, the maturation of crossovers into chiasmata plays a vital role in holding homologs together and ensuring their segregation at the first meiotic division. However, Lepidoptera (moths and butterflies) undergo 3 distinct meiotic processes, only one of which is canonical.

View Article and Find Full Text PDF

Mechanisms of cell division are remarkably diverse, suggesting the underlying molecular networks among eukaryotes differ extensively. The Aurora family of kinases orchestrates the process of chromosome segregation and cytokinesis during cell division through precise spatiotemporal regulation of their catalytic activities by distinct scaffolds. Plasmodium spp.

View Article and Find Full Text PDF

Kinetochores connect chromosomes to spindle microtubules to ensure their correct segregation during cell division. Kinetochores of human and yeasts are largely homologous, their ability to track depolymerizing microtubules, however, is carried out by the nonhomologous complexes Ska1-C and Dam1-C, respectively. We previously reported the unique anti-correlating phylogenetic profiles of Dam1-C and Ska-C found among a wide variety of eukaryotes.

View Article and Find Full Text PDF

Mechanisms of cell division are remarkably diverse, suggesting the underlying molecular networks among eukaryotes differ extensively. The Aurora family of kinases orchestrates the process of chromosome segregation and cytokinesis during cell division through precise spatiotemporal regulation of their catalytic activities by distinct scaffolds. spp.

View Article and Find Full Text PDF

The chromosomal passenger complex (CPC) is a heterotetrameric regulator of eukaryotic cell division, consisting of an Aurora-type kinase and a scaffold built of INCENP, Borealin, and Survivin. While most CPC components are conserved across eukaryotes, orthologs of the chromatin reader Survivin have previously only been found in animals and fungi, raising the question of how its essential role is carried out in other eukaryotes. By characterizing proteins that bind to the Borealin ortholog, we identified BOREALIN RELATED INTERACTOR 1 and 2 (BORI1 and BORI2) as redundant Survivin-like proteins in the context of the CPC in plants.

View Article and Find Full Text PDF

Kinetochores are multiprotein assemblies directing mitotic spindle attachment and chromosome segregation. In apicomplexan parasites, most known kinetochore components and associated regulators are apparently missing, suggesting a minimal structure with limited control over chromosome segregation. In this study, we use interactomics combined with deep homology searches to identify 13 previously unknown components of kinetochores in Apicomplexa.

View Article and Find Full Text PDF

Cells replicate and segregate their DNA with precision. Previous studies showed that these regulated cell-cycle processes were present in the last eukaryotic common ancestor and that their core molecular parts are conserved across eukaryotes. However, some metamonad parasites have secondarily lost components of the DNA processing and segregation apparatuses.

View Article and Find Full Text PDF

Aneuploidy is the leading cause of miscarriage and congenital birth defects, and a hallmark of cancer. Despite this strong association with human disease, the genetic causes of aneuploidy remain largely unknown. Through exome sequencing of patients with constitutional mosaic aneuploidy, we identified biallelic truncating mutations in CENATAC (CCDC84).

View Article and Find Full Text PDF

Chromosome segregation in eukaryotes is driven by the kinetochore, a macromolecular complex that connects centromeric DNA to microtubules of the spindle apparatus. Kinetochores in well-studied model eukaryotes consist of a core set of proteins that are broadly conserved among distant eukaryotic phyla. By contrast, unicellular flagellates of the class Kinetoplastida have a unique set of 36 kinetochore components.

View Article and Find Full Text PDF

The apical complex is the instrument of invasion used by apicomplexan parasites, and the conoid is a conspicuous feature of this apparatus found throughout this phylum. The conoid, however, is believed to be heavily reduced or missing from Plasmodium species and other members of the class Aconoidasida. Relatively few conoid proteins have previously been identified, making it difficult to address how conserved this feature is throughout the phylum, and whether it is genuinely missing from some major groups.

View Article and Find Full Text PDF

Apicomplexan parasites cause major human disease and food insecurity. They owe their considerable success to highly specialized cell compartments and structures. These adaptations drive their recognition, nondestructive penetration, and elaborate reengineering of the host's cells to promote their growth, dissemination, and the countering of host defenses.

View Article and Find Full Text PDF