We aimed to investigate the role of the CD40-CD40 ligand (CD40L) pathway in inflammation-mediated angiogenesis in proliferative diabetic retinopathy (PDR). We analyzed vitreous fluids and epiretinal fibrovascular membranes from PDR and nondiabetic patients, cultures of human retinal microvascular endothelial cells (HRMECs) and Müller glial cells and rat retinas with ELISA, immunohistochemistry, flow cytometry and Western blot analysis. Functional tests included measurement of blood-retinal barrier breakdown, in vitro angiogenesis and assessment of monocyte-HRMEC adherence.
View Article and Find Full Text PDFInflammation and fibrosis are key features of proliferative vitreoretinal disorders. We aimed to define the macrophage phenotype and investigate the role of macrophage-myofibroblast transition (MMT) in the contribution to myofibroblast populations present in epiretinal membranes. Vitreous samples from proliferative diabetic retinopathy (PDR), proliferative vitreoretinopathy (PVR) and nondiabetic control patients, epiretinal fibrovascular membranes from PDR patients and fibrocellular membranes from PVR patients, human retinal Müller glial cells and human retinal microvascular endothelial cells (HRMECs) were studied by ELISA, immunohistochemistry and flow cytometry analysis.
View Article and Find Full Text PDFWe analyzed the expression of ADAMTS proteinases ADAMTS-1, -2, -4, -5 and -13; their activating enzyme MMP-15; and the degradation products of proteoglycan substrates versican and biglycan in an ocular microenvironment of proliferative diabetic retinopathy (PDR) patients. Vitreous samples from PDR and nondiabetic patients, epiretinal fibrovascular membranes from PDR patients, rat retinas, retinal Müller glial cells and human retinal microvascular endothelial cells (HRMECs) were studied. The levels of ADAMTS proteinases and MMP-15 were increased in the vitreous from PDR patients.
View Article and Find Full Text PDFBackground: Furin converts inactive proproteins into bioactive forms. By activating proinflammatory and proangiogenic factors, furin might play a role in pathophysiology of proliferative diabetic retinopathy (PDR).
Methods: We studied vitreous samples from PDR and nondiabetic patients, epiretinal membranes from PDR patients, retinal microvascular endothelial cells (HRMECs), retinal Müller cells and rat retinas by ELISA, Western blot analysis, immunohistochemistry and immunofluorescence microscopy.
Purpose: Inflammation, angiogenesis and fibrosis are pathological hallmarks of proliferative diabetic retinopathy (PDR). The CD146/sCD146 pathway displays proinflammatory and proangiogenic properties. We investigated the role of this pathway in the pathophysiology of PDR.
View Article and Find Full Text PDFFront Immunol
June 2021
The transmembrane chemokine pathways CXCL16/CXCR6 and CX3CL1/CX3CR1 are strongly implicated in inflammation and angiogenesis. We investigated the involvement of these chemokine pathways and their processing metalloproteinases ADAM10 and ADAM17 in the pathophysiology of proliferative diabetic retinopathy (PDR). Vitreous samples from 32 PDR and 24 non-diabetic patients, epiretinal membranes from 18 patients with PDR, rat retinas, human retinal Müller glial cells and human retinal microvascular endothelial cells (HRMECs) were studied by enzyme-linked immunosorbent assay, immunohistochemistry and Western blot analysis.
View Article and Find Full Text PDFThe macrophage migration inhibitory factor (MIF)/CD74 signaling pathway is strongly implicated in inflammation and angiogenesis. We investigated the expression of MIF and its receptor CD74 in proliferative diabetic retinopathy (PDR) to reveal a possible role of this pathway in the pathogenesis of PDR. Levels of MIF, soluble (s)CD74, soluble intercellular adhesion molecule-1 (sICAM-1) and vascular endothelial growth factor (VEGF) were significantly increased in the vitreous from patients with PDR compared to nondiabetic control samples.
View Article and Find Full Text PDFPurpose: To investigate the expression of IL-11 and its receptor IL-11Rα and to quantify density of CD163 M2 macrophages in proliferative diabetic retinopathy (PDR).
Methods: Vitreous samples from 29 PDR and 19 nondiabetic patients, epiretinal fibrovascular membranes from 15 patients with PDR and Müller cells were studied by enzyme-linked immunosorbent assay, immunohistochemistry and Western blot analysis.
Results: We showed a significant increase in expression of IL-11, soluble(s) IL-11Rα, sCD163 and VEGF in vitreous samples from PDR patients compared to nondiabetic controls.
Purpose: Galectin-1 regulates endothelial cell function and promotes angiogenesis. We investigated the hypothesis that galectin-1 may be involved in the pathogenesis of proliferative diabetic retinopathy (PDR).
Methods: Vitreous samples from 36 PDR and 20 nondiabetic patients, epiretinal fibrovascular membranes from 13 patients with PDR, rat retinas and human retinal Müller glial cells were studied by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry and Western blot analysis.
Purpose: Matrix metalloproteinase-14 (MMP-14) is a transmembrane MMP that plays a critical role in promoting angiogenesis. We investigated the expression levels of MMP-14 and correlated the levels with clinical disease activity and with the levels of the angiogenic factors vascular endothelial growth factor (VEGF) and MMP-9 in proliferative diabetic retinopathy (PDR). To reinforce the findings at the functional level, we examined the expression of MMP-14 in the retinas of diabetic rats.
View Article and Find Full Text PDF