Publications by authors named "Eeckhaut A"

Article Synopsis
  • Chiral metabolomics is a growing area in neuroscience that focuses on D-amino acids as potential biomarkers for neurological diseases, utilizing advanced analytical techniques like liquid chromatography-mass spectrometry (LC-MS).
  • The review highlights the importance of D-amino acids in disease pathology, particularly their influence on neurotransmission, and discusses the need for sensitive methods due to their low concentration in biological samples.
  • Recent advancements in chiral derivatization and LC-MS/MS techniques have improved the detection and quantification of D-amino acids, enhancing our understanding of their role in neurological disorders and drug interactions in the brain.
View Article and Find Full Text PDF

Background: Microbial melanins possess a broad spectrum of biological activities. However, there is little understanding of their neuroprotective and neuronal cell differentiation properties. This study aimed to extract, purify, and modify melanins from two medicinal fungi (Daedaleopsis tricolor and Fomes fomentarius), and to evaluate their antioxidant activity, as well as their cell protective ability against neurotoxins.

View Article and Find Full Text PDF

The diagnostic work-up of cancer of unknown primary (CUP) is a challenging task; in addition, only a little data on BRAF targeting in CUP are currently available. Traditionally, the identification of favourable and unfavourable CUP subsets directs the choice of treatment. The present article reports the case of a 50-year-old male patient presenting with a BRAF-mutated CUP, a rare and generally unfavourable subset.

View Article and Find Full Text PDF

Attention Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that has long been considered a concern only in the pediatric population. However, symptoms often sustain into adulthood and may require medication. For women with ADHD, this also means dealing with the disorder during the reproductive period.

View Article and Find Full Text PDF

The analysis of the brain extracellular metabolome is of interest for numerous subdomains within neuroscience. Not only does it provide information about normal physiological functions, it is even more of interest for biomarker discovery and target discovery in disease. The extracellular analysis of the brain is particularly interesting as it provides information about the release of mediators in the brain extracellular fluid to look at cellular signaling and metabolic pathways through the release, diffusion and re-uptake of neurochemicals.

View Article and Find Full Text PDF

Neuromedin U (NMU) is an evolutionary conserved neuropeptide that has been implicated in multiple processes, such as circadian regulation, energy homeostasis, reward processing and stress coping. Although the central expression of NMU has been addressed previously, the lack of specific and sensitive tools has prevented a comprehensive characterization of NMU-expressing neurons in the brain. We have generated a knock-in mouse model constitutively expressing Cre recombinase under the promoter.

View Article and Find Full Text PDF

Objective: In the management of epilepsy, there is an ongoing quest to discover new biomarkers to improve the diagnostic process, the monitoring of disease progression, and the evaluation of treatment responsiveness. In this regard, biochemical traceability in biofluids is notably absent in contrast to other diseases. In the present preclinical study, we investigated the potential of neurofilament light chain (NfL) as a possible diagnostic and response fluid biomarker for epilepsy.

View Article and Find Full Text PDF

Aim: The neurobiological effects of repetitive transcranial magnetic stimulation are believed to run in part through the dopaminergic system. Accelerated high frequency rTMS (aHF-rTMS), a new form of stimuli delivery, is currently being tested for its usefulness in treating human and canine mental disorders. However, the short-and long-term neurobiological effects are still unclear, including the effects on the dopaminergic system.

View Article and Find Full Text PDF

Neuromedin U (NmU) and neuromedin S (NmS) are two closely related neuropeptides belonging to the neuromedin family. NmU usually occurs either as a truncated eight amino acid long peptide (NmU-8) or as an 25 amino acid long peptide, although other molecular forms exist depending on the species considered. NmS, on the other hand, is a 36 amino acid long peptide, sharing the same amidated C-terminal heptapeptide with NmU.

View Article and Find Full Text PDF

Purpose: The aim of the present study was to evaluate the role of ejection fraction (EF), left ventricular (LV) global longitudinal strain (LVGLS) and global constructive work (GCW) as prognostic variables in patients with cardiac amyloidosis (CA).

Methods: CA patients were retrospectively identified between 2015 and 2021 at a tertiary care hospital. Comprehensive clinical, biochemical, and imaging evaluation including two-dimensional (2D) echocardiography with myocardial work (MW) analysis was performed.

View Article and Find Full Text PDF

Gaining insights into the pharmacokinetic and pharmacodynamic properties of lead compounds is crucial during drug development processes. When it comes to the treatment of brain diseases, collecting information at the site of action is challenging. There are only a few techniques available that allow for the direct sampling from the cerebral interstitial space.

View Article and Find Full Text PDF

Repetitive transcranial magnetic stimulation (rTMS) is thought to partly exert its antidepressant action through the serotonergic system. Accelerated rTMS may have the potential to result in similar but faster onset of clinical improvement compared to the classical daily rTMS protocols, but given that delayed clinical responses have been reported, the neurobiological effects of accelerated paradigms remain to be elucidated including on this neurotransmitter system. This sham-controlled study aimed to evaluate the effects of accelerated high frequency rTMS (aHF-rTMS) over the left frontal cortex on the serotonin transporter (SERT) in healthy beagle dogs.

View Article and Find Full Text PDF

A novel molecularly imprinted monolithic (MIM) column was designed and fabricated using the epitope approach, and was used for the selective capillary microextraction (CME) of the neuropeptides neurotensin (NT) and neuromedin N (NmN). The MIMs were synthesized in a capillary by thermally initiated polymerization of the functional monomer (methacrylic acid (MAA)), in the presence of a dummy template (Pro-Tyr-Ile-Leu (PYIL)), a crosslinker and porogens. The resulting monoliths were characterized by scanning electron microscopy, pore size distribution measurement, and Fourier transform infrared spectroscopy.

View Article and Find Full Text PDF

Two closely related glycogen synthase kinase-3 (GSK-3) isoforms have been identified in mammals: GSK-3α and GSK-3β. GSK-3β is the most prominent in the central nervous system and was previously shown to control neuronal excitability. We previously demonstrated that indirubin and its structural analogue and the nonselective GSK-3 inhibitor BIO-acetoxime exerted anticonvulsant effects in acute seizure models in zebrafish, mice, and rats.

View Article and Find Full Text PDF

The astrocytic cystine/glutamate antiporter system x (with xCT as the specific subunit) imports cystine in exchange for glutamate and has been shown to interact with multiple pathways in the brain that are dysregulated in age-related neurological disorders, including glutamate homeostasis, redox balance, and neuroinflammation. In the current study, we investigated the effect of genetic xCT deletion on lactacystin (LAC)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced degeneration of the nigrostriatal pathway, as models for Parkinson's disease (PD). Dopaminergic neurons of adult xCT knock-out mice (xCT) demonstrated an equal susceptibility to intranigral injection of the proteasome inhibitor LAC, as their wild-type (xCT) littermates.

View Article and Find Full Text PDF

The use of biologics in the therapeutic landscape has increased exponentially since the last 3 decades. Nevertheless, patients with central nervous system (CNS) related disorders could not yet benefit from this revolution because the blood-brain barrier (BBB) severely hampers biologics from entering the brain. Considerable effort has been put into generating methods to modulate or circumvent the BBB for delivery of therapeutics to the CNS.

View Article and Find Full Text PDF

Selected-Ion Flow-Tube Mass Spectrometry (SIFT-MS) has been applied in a clinical context as diagnostic tool for breath samples using target biomarkers. Exhaled breath sampling is non-invasive and therefore much more patient friendly compared to bronchoscopy, which is the golden standard for evaluating airway inflammation. In the actual pilot study, 55 exhaled breath samples of children with asthma, cystic-fibrosis and healthy individuals were included.

View Article and Find Full Text PDF

Despite the extensive use of electrospray ionization (ESI) for the quantification of neuropeptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS), poor ionization and transmission efficiency are described for this ionization interface. A new atmospheric pressure ionization source, named UniSpray, was recently developed and commercialized. In this study, the LC-MS performance of this new ionization interface is evaluated and compared with ESI for the quantification of seven neuropeptides.

View Article and Find Full Text PDF

Currently, a high variety of analytical techniques to perform metabolomics is available. One of these techniques is capillary electrophoresis coupled to mass spectrometry (CE-MS), which has emerged as a rather strong analytical technique for profiling polar and charged compounds. This work aims to discover with CE-MS potential metabolic consequences of evoked seizures in plasma by using a 6Hz acute corneal seizure mouse model.

View Article and Find Full Text PDF

The ghrelin system was previously proposed to mediate an independent branch of the stress response that curbs fear processing. Interestingly, the ghrelin system was also shown to control the activity of midbrain dopamine neurons. Given that dopamine neurons of the ventral tegmental area appear to have a critical role in fear processing, we aimed to investigate their contribution to the effects of ghrelin on fear processing.

View Article and Find Full Text PDF

Neuromedin U (NMU) is a highly conserved neuropeptide that has been implicated in the stress response. To better understand how it influences various aspects of the stress response, we studied the effects of intracerebroventricular NMU-8 administration on stress-related behavior and activity of the hypothalamus-pituitary-adrenal (HPA) axis in male C57BL/6J mice. We investigated these NMU-8 effects when mice remained in their home cage and when they were challenged by exposure to forced swim stress.

View Article and Find Full Text PDF

Metabolomics is the comprehensive study of small-molecule metabolites. Obtaining a wide coverage of the metabolome is challenging because of the broad range of physicochemical properties of the small molecules. To study the compounds of interest spectroscopic (NMR), spectrometric (MS) and separation techniques (LC, GC, supercritical fluid chromatography, CE) are used.

View Article and Find Full Text PDF

The neuromedin U peptide sequence is highly conserved between various species. Neuromedin U is involved in a variety of physiological processes. It exerts its effects via two neuromedin U receptors, NMUR1 and NMUR2.

View Article and Find Full Text PDF

The actual utility of capillary electrophoresis-mass spectrometry (CE-MS) for biomarker discovery using metabolomics still needs to be assessed. Therefore, a simulated comparative metabolic profiling study for biomarker discovery by CE-MS was performed, using pooled human plasma samples with spiked biomarkers. Two studies have been carried out in this work.

View Article and Find Full Text PDF

With increasing evidence of the important role of peptides in pathophysiological processes, a trend towards the development of highly sensitive bioanalytical methods is ongoing. Inherent to the electrospray ionization process of peptides and proteins is the production of multiple charge states which may hamper proper and sensitive method development. Supercharging agents allow modifying the maximal charge state and the corresponding distribution of charges, thereby potentially increasing the number of ions reaching the detector in selected reaction monitoring mode.

View Article and Find Full Text PDF