Publications by authors named "Ee-Kim Tan"

Multiciliated cells (MCCs) ensure fluid circulation in various organs. Their differentiation is marked by the amplification of cilia-nucleating centrioles, driven by a genuine cell-cycle variant, which is characterized by wave-like expression of canonical and non-canonical cyclins such as Cyclin O (CCNO). Patients with CCNO mutations exhibit a subtype of primary ciliary dyskinesia called reduced generation of motile cilia (RGMC).

View Article and Find Full Text PDF

The generation of lung epithelial cells through the directed differentiation of human pluripotent stem cells (hPSCs) in vitro provides a platform to model both embryonic lung development and adult airway disease. Here, we describe a robust differentiation protocol that closely recapitulates human embryonic lung development. Differentiating cells progress through obligate intermediate stages, beginning with definitive endoderm formation and then patterning into anterior foregut endoderm that yields lung progenitors (LPs) with extended culture.

View Article and Find Full Text PDF

The gene mutated in colorectal cancer (MCC) encodes a coiled-coil protein implicated, as its name suggests, in the pathogenesis of hereditary human colon cancer. To date, however, the contributions of MCC to intestinal homeostasis and disease remain unclear. Here, we examine the subcellular localization of MCC, both at the mRNA and protein levels, in the adult intestinal epithelium.

View Article and Find Full Text PDF

Basal cells are multipotent stem cells responsible for the repair and regeneration of all the epithelial cell types present in the proximal lung. In mice, the elusive origins of basal cells and their contribution to lung development were recently revealed by high-resolution, lineage tracing studies. It however remains unclear if human basal cells originate and participate in lung development in a similar fashion, particularly with mounting evidence for significant species-specific differences in this process.

View Article and Find Full Text PDF

Mitchell-Riley syndrome (MRS) is caused by recessive mutations in the regulatory factor X6 gene () and is characterised by pancreatic hypoplasia and neonatal diabetes. To determine why individuals with MRS specifically lack pancreatic endocrine cells, we micro-CT imaged a 12-week-old foetus homozygous for the nonsense mutation c.1129C>T, which revealed loss of the pancreas body and tail.

View Article and Find Full Text PDF

Pluripotent stem cells have been proposed as an unlimited source of pancreatic β cells for studying and treating diabetes. However, the long, multi-step differentiation protocols used to generate functional β cells inevitably exhibit considerable variability, particularly when applied to pluripotent cells from diverse genetic backgrounds. We have developed culture conditions that support long-term self-renewal of human multipotent pancreatic progenitors, which are developmentally more proximal to the specialized cells of the adult pancreas.

View Article and Find Full Text PDF

Inactivation of the Pancreatic and Duodenal Homeobox 1 (PDX1) gene causes pancreatic agenesis, which places PDX1 high atop the regulatory network controlling development of this indispensable organ. However, little is known about the identity of PDX1 transcriptional targets. We simulated pancreatic development by differentiating human embryonic stem cells (hESCs) into early pancreatic progenitors and subjected this cell population to PDX1 chromatin immunoprecipitation sequencing (ChIP-seq).

View Article and Find Full Text PDF

During vertebrate gastrulation, a complex set of mass cellular rearrangements shapes the embryonic body plan and appropriately positions the organ primordia. In zebrafish and Xenopus, convergence and extension (CE) movements simultaneously narrow the body axis mediolaterally and elongate it from head to tail. This process is governed by polarized cell behaviors that are coordinated by components of the non-canonical, β-catenin-independent Wnt signaling pathway, including Wnt5b and the transmembrane planar cell polarity (PCP) protein Vangl2.

View Article and Find Full Text PDF

Activin/Nodal signaling via SMAD2/3 maintains human embryonic stem cell (hESC) pluripotency by direct transcriptional regulation of NANOG or, alternatively, induces mesoderm and definitive endoderm (DE) formation. In search of an explanation for these contrasting effects, we focused on SNON (SKIL), a potent SMAD2/3 corepressor that is expressed in hESCs but rapidly down-regulated upon differentiation. We show that SNON predominantly associates with SMAD2 at the promoters of primitive streak (PS) and early DE marker genes.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) herald tremendous promise for the production of clinically useful cell types for the treatment of injury and disease. Numerous reports demonstrate their differentiation into definitive endoderm (DE) cells, the germ layer from which pancreatic β cells and hepatocytes arise, solely from exposure to a high dose of recombinant Activin/Nodal. We show that combining a second related ligand, BMP4, in combination with Activin A yields 15%-20% more DE as compared with Activin A alone.

View Article and Find Full Text PDF

Mutated in Colorectal Cancer (MCC) encodes a multiple PSD-95/Dlg/ZO-1 (PDZ) domain-containing protein implicated, as its name suggests, in the pathogenesis of human colon cancer. To date, however, what role, if any, MCC plays in normal tissue homeostasis and development remains unclear. In an effort to expand our understanding of MCC function and distribution, we examined the expression of the evolutionarily conserved mouse Mcc homolog between embryonic days (E) 6.

View Article and Find Full Text PDF

Human embryonic stem (hES) cells represent a potentially unlimited source of transplantable beta-cells for the treatment of diabetes. Here we describe a differentiation strategy that reproducibly directs HES3, an National Institutes of Health (NIH)-registered hES cell line, into cells of the pancreatic endocrine lineage. HES3 cells are removed from their feeder layer and cultured as embryoid bodies in a three-dimensional matrix in the presence of Activin A and Bmp4 to induce definitive endoderm.

View Article and Find Full Text PDF

Background: Keloids are characterized by abnormal proliferation and overproduction of extracellular matrix. Quercetin, a dietary compound, has strong antioxidant and anticancer properties. Previous studies by the authors have shown that quercetin inhibits fibroblast proliferation, collagen production, and contraction of keloid and hypertrophic scar-derived fibroblasts.

View Article and Find Full Text PDF

Keloid fibroproliferation appears to be influenced by epithelial-mesenchymal interactions between keloid keratinocytes (KKs) and keloid fibroblasts (KFs). Keloid and normal fibroblasts exhibit accelerated proliferation and collagen I and III production in co-culture with KKs compared with single cell culture or co-culture with normal keratinocytes. ERK and phosphatidylinositol 3-kinase (PI3K) pathway activation has been observed in excessively proliferating KFs in co-culture with KKs.

View Article and Find Full Text PDF