Publications by authors named "Ee V Lau"

We report a Technical Note on detecting nanoplastics in water samples through electrophoresis and quartz crystal microbalance (QCM) instrumentation. We conducted electrophoresis experiments by immersing a QCM in a sample of ultrapure water containing polyethylene (PE) nanoplastics. It was interesting to observe that nanoplastics were attracted toward the QCM and adhered to one side of the QCM electrode.

View Article and Find Full Text PDF

Background And Objectives: Thermochemical ablation (TCA) is a cancer treatment that utilises the heat released from the neutralisation of acid and base to raise tissue temperature to levels sufficient to induce thermal coagulation. Computational studies have demonstrated that the coagulation volume produced by sequential injection is smaller than that with simultaneous injection. By injecting the reagents in an ensuing manner, the region of contact between acid and base is limited to a thin contact layer sandwiched between the distribution of acid and base.

View Article and Find Full Text PDF

Background And Objectives: Thermochemical ablation (TCA) is a thermal ablation technique involving the injection of acid and base, either sequentially or simultaneously, into the target tissue. TCA remains at the conceptual stage with existing studies unable to provide recommendations on the optimum injection rate, and reagent concentration and volume. Limitations in current experimental methodology have prevented proper elucidation of the thermochemical processes inside the tissue during TCA.

View Article and Find Full Text PDF

Thermochemical ablation (TCA) is a thermal ablation therapy that utilises heat released from acid-base neutralisation reaction to destroy tumours. This procedure is a promising low-cost solution to existing thermal ablation treatments such as radiofrequency ablation (RFA) and microwave ablation (MWA). Studies have demonstrated that TCA can produce thermal damage that is on par with RFA and MWA when employed properly.

View Article and Find Full Text PDF

Unlabelled: Oil spills result in negative impacts on the environment, economy and society. Due to tidal and waves actions, the oil spillage affects the shorelines by adhering to the soil, making it difficult for immediate cleaning of the soil. As shoreline clean-up is the most costly component of a response operation, there is a need for effective oil remediation technologies.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) in soil have been recognised as a serious health and environmental issue due to their carcinogenic, mutagenic and teratogenic properties. One of the commonly employed soil remediation techniques to clean up such contamination is soil washing or solvent extraction. The main factor which governs the efficiency of this process is the solubility of PAHs in the extraction agent.

View Article and Find Full Text PDF

The concentrations of polycyclic aromatic hydrocarbons (PAHs) in soil samples were measured at five different sites within Klang Valley, Malaysia. The results showed that the total concentrations of the fourteen priority PAHs ranged from 64 to 155 μg/kg. Irrespective of the land use, all the measured soil PAH concentrations in this study were significantly lower than that found in soil samples in temperate regions.

View Article and Find Full Text PDF