Publications by authors named "Ee L Lim"

Article Synopsis
  • * Variants of UNC93B1 (E92G and R336L) were found in patients with early-onset systemic lupus erythematosus (SLE), correlating with heightened inflammatory responses when stimulated by TLR7/TLR8 agonists.
  • * The E92G variant destabilizes the UNC93B1 protein, leading to increased TLR7 activity and type I interferon signaling, pointing to a potential therapeutic target for managing SLE by focusing on TLR7.
View Article and Find Full Text PDF

Hyperactive TLR7 signaling has long been appreciated as driver of autoimmune disease in mouse models. Recently, gain-of-function mutations in TLR7 were identified as a monogenic cause of human lupus. TLR7 is an intracellular transmembrane receptor, sensing RNA breakdown products within late endosomes.

View Article and Find Full Text PDF

The maxilla is generally acknowledged as being more trabecular than the mandible. Allograft currently available for use in the maxillofacial region is harvested from the hip and long bones, irrespective of their local characteristics, and grafted onto the jawbones. Other alternative are autograft or commercially available bone substitutes.

View Article and Find Full Text PDF

Thymic selection and peripheral activation of conventional T (Tconv) and regulatory T (Treg) cells depend on TCR signaling, whose anomalies are causative of autoimmunity. Here, we expressed in normal mice mutated ZAP-70 molecules with different affinities for the CD3 chains, or wild type ZAP-70 at graded expression levels under tetracycline-inducible control. Both manipulations reduced TCR signaling intensity to various extents and thereby rendered those normally deleted self-reactive thymocytes to become positively selected and form a highly autoimmune TCR repertoire.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) expressing the transcription factor Foxp3 play a critical role in the control of immune homeostasis including the regulation of humoral immunity. Recently, it has become clear that a specialized subset of Tregs, T-follicular regulatory cells (Tfr), have a particular role in the control of T-follicular helper (Tfh) cell-driven germinal center (GC) responses. Following similar differentiation signals as received by Tfh, Tfr gain expression of characteristic chemokine receptors and transcription factors such as CXCR5 and BCL6 allowing them to travel to the B-cell follicle and deliver in situ suppression.

View Article and Find Full Text PDF

Tumour infiltration by regulatory T (Treg) cells contributes to suppression of the anti-tumour immune response, which limits the efficacy of immune-mediated cancer therapies. The phosphoinositide 3-kinase (PI3K) pathway has key roles in mediating the function of many immune cell subsets, including Treg cells. Treg function is context-dependent and depends on input from different cell surface receptors, many of which can activate the PI3K pathway.

View Article and Find Full Text PDF
Article Synopsis
  • Anti-CTLA-4 monoclonal antibodies (mAb) improve tumor immunity in humans by selectively targeting T cell populations, particularly differentiation between suppressive Treg and activating CD8 T cells.
  • High-ADCC/ADCP anti-CTLA-4 mAb can effectively deplete FOXP3 Treg cells while promoting the expansion of tumor-specific CD8 T cells, especially when antigen exposure is delayed after mAb treatment.
  • The study highlights the importance of antibody modification and timing in enhancing immune responses in cancer therapy, opening pathways for future immunotherapy designs.
View Article and Find Full Text PDF

Redundancy and compensation provide robustness to biological systems but may contribute to therapy resistance. Both tumor-associated macrophages (TAMs) and Foxp3+ regulatory T (Treg) cells promote tumor progression by limiting antitumor immunity. Here we show that genetic ablation of CSF1 in colorectal cancer cells reduces the influx of immunosuppressive CSF1R+ TAMs within tumors.

View Article and Find Full Text PDF

Multiple modes of immunosuppression restrain immune function within tumors. We previously reported that phosphoinositide 3-kinase δ (PI3Kδ) inactivation in mice confers resistance to a range of tumor models by disrupting immunosuppression mediated by regulatory T cells (Tregs). The PI3Kδ inhibitor idelalisib has proven highly effective in the clinical treatment of chronic lymphocytic leukemia and the potential to extend the use of PI3Kδ inhibitors to nonhematological cancers is being evaluated.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to analyze the thickness of the lateral wall of the maxillary sinus in Asian populations using Cone Beam Computed Tomography (CBCT) on 109 patients at a teaching hospital.
  • Measurements were taken at various points along the plane beneath the orbital floor, revealing a decrease in bone thickness as distance from the floor increased, with significant findings related to canine and molar areas.
  • The results highlight how variations in bone thickness could influence surgical approaches for procedures like osteotomies and sinus lifts in oral surgery.
View Article and Find Full Text PDF

We theoretically propose an air-core erbium doped fiber amplifier capable of providing relatively uniform gain for 12 orbital angular momentum (OAM) modes (|L| = 5, 6 and 7, where |L| is the OAM mode order) over the C-band. Amplifier performance under core pumping conditions for a uniformly doped core for each of the supported pump modes (110 in total) was separately assessed. The differential modal gain (DMG) was found to vary significantly depending on the pump mode used, and the minimum DMG was found to be 0.

View Article and Find Full Text PDF

This study investigated the hypothesis that the salt adaptation response of Enterococcus faecalis alters susceptibility to tea tree oil (TTO). Six E. faecalis isolates were adapted to 6.

View Article and Find Full Text PDF

The oncomir microRNA-125b (miR-125b) is upregulated in a variety of human neoplastic blood disorders and constitutive upregulation of miR-125b in mice can promote myeloid and B-cell leukemia. We found that miR-125b promotes myeloid and B-cell neoplasm by inducing tumorigenesis in hematopoietic progenitor cells. Our study demonstrates that miR-125b induces myeloid leukemia by enhancing myeloid progenitor output from stem cells as well as inducing immortality, self-renewal, and tumorigenesis in myeloid progenitors.

View Article and Find Full Text PDF

Inhibitors against the p110δ isoform of phosphoinositide-3-OH kinase (PI(3)K) have shown remarkable therapeutic efficacy in some human leukaemias. As p110δ is primarily expressed in leukocytes, drugs against p110δ have not been considered for the treatment of solid tumours. Here we report that p110δ inactivation in mice protects against a broad range of cancers, including non-haematological solid tumours.

View Article and Find Full Text PDF

Drug metabolism involving cytochrome P450 (CYP) enzymes is a key determinant of significant drug interactions. Deoxyelephantopin was evaluated for its effects on the expression of mRNAs encoding CYP1A2, CYP2D6 and CYP3A4, and protein expression and resultant enzymatic activity. The mRNA and protein expression of cytochrome isoforms were carried out using an optimized multiplex qRT-PCR assay and Western blot analysis, respectively.

View Article and Find Full Text PDF

CYP450 enzymes are key determinants in drug toxicities, reduced pharmacological effect and adverse drug reactions. Mitragynine, an euphoric compound was evaluated for its effects on the expression of mRNAs encoding CYP1A2, CYP2D6 and CYP3A4 and protein expression and resultant enzymatic activity. The mRNA and protein expression of CYP450 isoforms were carried out using an optimized multiplex qRT-PCR assay and Western blot analysis.

View Article and Find Full Text PDF

Recent advances in genome-wide association studies (GWAS) have enabled us to identify thousands of genetic variants (GVs) that are associated with human diseases. As next-generation sequencing technologies become less expensive, more GVs will be discovered in the near future. Existing databases, such as NHGRI GWAS Catalog, collect GVs with only genome-wide level significance.

View Article and Find Full Text PDF

Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. We hypothesized that any impairment in insulin-stimulated muscle ATP production could merely reflect the lower rates of muscle glucose uptake and glycogen synthesis, rather than cause it. If this is correct, muscle ATP turnover rates in type 2 diabetes could be increased if glycogen synthesis rates were normalized by the mass-action effect of hyperglycemia.

View Article and Find Full Text PDF

Suppression of lipolysis by acipimox is known to improve insulin-stimulated glucose disposal, and this is an important phenomenon. The mechanism has been assumed to be an enhancement of glucose storage as glycogen, but no direct measurement has tested this concept or its possible relationship to the reported impairment in insulin-stimulated muscle ATP production. Isoglycaemic-hyperinsulinaemic clamps with [13C]glucose infusion were performed on Type 2 diabetic subjects and matched controls with measurement of glycogen synthesis by 13C MRS (magnetic resonance spectroscopy) of muscle.

View Article and Find Full Text PDF

There is increasing evidence that obesity may have pathophysiological effects that extend beyond its well-known co-morbidities; in particular its role in cancer has received considerable epidemiological support. As adipose tissue becomes strongly established as an endocrine organ, two of its most abundant and most investigated adipokines, leptin and adiponectin, are also taken beyond their traditional roles in energy homeostasis, and are implicated as mediators of the effects of obesity on cancer development. This review examines these adipokines in relation to the prostate, breast, colorectal, thyroid, renal, pancreatic, endometrial and oesophageal cancers, and how they may orchestrate the influence of obesity on the development of these malignancies.

View Article and Find Full Text PDF

Mitochondrial dysfunction has been proposed to underlie the insulin resistance of type 2 diabetes. However, the relative time course of insulin action in stimulating ATP turnover rate and glucose uptake in skeletal muscle has not been examined. These two parameters were measured in young healthy subjects using the (31)P MRS saturation transfer method in conjunction with the euglycaemic hyperinsulinaemic clamp technique respectively.

View Article and Find Full Text PDF

Objective: To determine whether increased daily physical activity improves mitochondrial function and/or lipid oxidation in type 2 diabetes.

Research Design And Methods: Volunteers with (n = 10) and without (n = 10) type 2 diabetes were matched for habitual physical activity, age, sex, and weight. Basal and maximal mitochondrial activity, physical activity, and resting substrate oxidation were measured at baseline and after 2 and 8 weeks of increased physical activity.

View Article and Find Full Text PDF