Publications by authors named "Edyta Podstawka"

In this work, we report systematic surface-enhanced Raman spectroscopy (SERS) and generalized two-dimensional correlation analysis (G2DCA) studies of the structures of five specifically modified phenylalanine-substituted C-terminal bombesin 6-14 fragments (BN(6-14)). The fragments studied have all been tested as chemotherapeutic agents in cancer therapy, and they form amino acid sequences in bombesin: cyclo[d-Phe(6),His(7),Leu(14)]BN(6-14), [D-Phe(6),Leu-NHEt(13),des-Met(14)]BN(6-14), [D-Phe(6),Leu(13)-((R))-p-Cl-Phe(14)]BN(6-14), [D-Phe(6),beta-Ala(11),Phe(13),Nle(14)]BN(6-14), and [D-Tyr(6),beta-Ala(11),Phe(13),Nle(14)]BN(6-14). We adsorbed these fragments onto roughened Ag, Au, and Cu electrode surfaces, using a potential range from -1.

View Article and Find Full Text PDF

Here, we report a systematic surface-enhanced Raman spectroscopy (SERS) study of the structures of phosphonate derivatives of the N-heterocyclic aromatic compounds imidazole (ImMeP ([hydroxy(1H-imidazol-5-yl)methyl]phosphonic acid) and (ImMe)(2)P (bis[hydroxy-(1H-imidazol-4-yl)-methyl]phosphinic acid)), thiazole (BAThMeP (butylaminothiazol-2-yl-methyl)phosphonic acid) and BzAThMeP (benzylaminothiazol-2-yl-methyl)phosphonic acid)), and pyridine ((PyMe)(2)P (bis[(hydroxypyridin-3-yl-methyl)]phosphinic acid)) adsorbed on nanometer-sized colloidal particles. We compared these structures to those on a roughened silver electrode surface to determine the relationship between the adsorption strength and the geometry. For example, we showed that all of these biomolecules interact with the colloidal surface through aromatic rings.

View Article and Find Full Text PDF

This paper reports the direct surface-enhanced Raman spectroscopic (SERS) and generalized two-dimensional correlation analysis observations of the different orientations of the neurotransmitter bombesin (BN) chemisorbed on electrochemically roughened Ag, Au, and Cu electrode surfaces at different applied electrode potentials and at physiological pH. The presence of the indole ring of Trp(8) and the amide bond between Gln(7) and Trp(8) of BN on these surfaces generates a specific SERS profile of BN adsorbed on the roughened Ag and Au electrodes that is affected by the electrode potential. Furthermore, for BN on Au, slight changes are observed in the band enhancement in comparison to what is observed for this neurotransmitter immobilized on Ag.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) spectra from phosphonate derivatives of N-heterocyclic aromatic compounds immobilized on an electrochemically roughened silver electrode surface are reported and compared to Raman spectra of the corresponding solid species. The tested compounds contain imidazole [ImMeP ([hydroxy-(1H-imidazol-5-yl)-methyl]-phosphonic acid) and (ImMe)2P (bis[hydroxy-(1H-imidazol-4-yl)-methyl]-phosphinic acid)]; thiazole [BAThMeP ((butylamino-thiazol-2-yl-methyl)-phosphonic acid) and BzAThMeP ((benzylamino-thiazol-2-yl-methyl)-phosphonic acid)]; and pyridine ((PyMe)2P (bis[(hydroxy-pyridin-3-yl-methyl)]-phosphinic acid) aromatic rings. Changes in wavenumber, broadness, and the enhancement of N-heterocyclic aromatic ring bands upon adsorption are consistent with the adsorption primarily occurring through the N lone pair of electrons with the ring arranged in a largely edge-on manner for ImMeP and BzAThMeP or in a slightly inclined orientation to the silver electrode surface at an intermediate angle from the surface normal for (ImMe)2P, BAThMeP, and (PyMe)2P.

View Article and Find Full Text PDF

Vibrational spectra of adenosine bearing benzo-15-crown ether moiety [N(6)-4'-(benzo-15-crown-5)-adenosine, AC] have been recorded in solid phase (FT-IR, FT-Raman) and in aqueous solution on the silver colloid surface (SERS). To interpret a very complex vibrational pattern of experimental data, geometrical parameters (molecular structure) as well as harmonic frequencies of the isolated molecule were calculated at the density functional theory level [B3LYP/6-31G(d)]. Assignment of the observed vibrational modes is discussed on the basis of the theoretical results obtained for N(6)-4'-(benzo-15-crown-5)-adenosine as well as its molecular isolated fragments, i.

View Article and Find Full Text PDF

We used surface-enhanced Raman scattering (SERS) to characterize the adsorption behavior of bombesin (BN) and five BN-related peptides, including phyllolitorin, [Leu(8)]phyllolitorin, neuromedin C (NMC), neuromedin B (NMB), and PG-L (Pseudophryne guntheri), in a silver colloidal solution. Our experiments show that the pyrrole coring of the Trp and aromatic ring of Phe of these peptides are preferentially adsorbed on silver nanoparticles. However, the geometry of the rings and the strength of the interactions with this surface vary among peptides.

View Article and Find Full Text PDF

FT-IR and FT-RS spectra of three phosphonate tripeptides containing P-terminal L-Met-L-Ala [L-Gly-L-Met-L-Ala-PO3H2 (GMA), L-Leu-L-Met-L-Ala-PO3H2 ( LMA), and L-Phe-L-Met-L-Ala-PO3H2 (PMA)] were recorded and analyzed. Vibrational wavenumbers and intensities were calculated by density functional theory (DFT) at the B3LYP/6-311++G** level of theory and compared to these molecules in solid form. On the basis of this comparison, conclusions were drawn about the molecular structures.

View Article and Find Full Text PDF

Raman (RS) and surface-enhanced Raman scattering spectra (SERS) were measured for various length carboxyl terminal fragments (X-14 of amino acid sequence) of bombesin ( BN): BN13-14, BN12-14, BN11-14, BN10-14, BN9-14, and BN8-14 in silver colloidal solutions. Density functional theory (DFT) calculations of Raman wavenumbers and intensities with extended basis sets (B3LYP/6-31++G**) were performed with the aim of providing the definitive band allocations to the normal coordinates. The proposed band assignment is consistent with the assignment for similar compounds reported in the literature.

View Article and Find Full Text PDF

This work presents a Fourier-transform absorption infrared, Fourier-transform Raman, and surface-enhanced Raman scattering (SERS) study of the following peptides belonging to the bombesin-like family: phyllolitorin, [Leu(8)]phyllolitorin, NMB, NMC, and PG-L. The SERS study was undertaken to understand the adsorption mechanism of bombesin-like peptides on an electrochemically roughened silver electrode surface and to show changes in the adsorption mechanism with alterations in amino acids and small tertiary structures. The SERS spectra presented here shows bands mainly associated with the Trp(8) residue vibrations.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) spectroscopy has been applied to investigate the interaction with a silver colloidal surface of following seven 6-14 fragments of bombesin (BN) C-terminus: cyclo[D-Phe(6),His(7),Leu(14)]BN(6-14), [D-Phe(6),Leu-NHEt(13),des-Met(14)]BN(6-14), [D-Phe(6),Leu(13)-(R)-p-chloro-Phe(14)]BN(6-14), [D-Phe(6),beta-Ala(11),Phe(13),Nle(14)]BN(6-14), [D-Tyr(6),beta-Ala(11),Phe(13),Nle(14)]BN(6-14), [D-Tyr(6),beta-Phe(11),Phe(13),Nle(14)OH]BN(6-14), and [D-Cys(6),Asn(7),D-Ala(11),Cys(14)]BN(6-14), potent r-GRP-R receptor antagonists used in chemotherapy and potential effective drugs in cancer treatment. The adsorption active sites and molecular orientations on the colloidal silver surface have been determined on the basis of SERS "surface selection rules" subsequent to a detailed SERS analysis. In addition, the similarities and differences of these spectra with the SERS spectra of the peptides immobilized on a roughened silver electrode surface have been examined.

View Article and Find Full Text PDF

In this article, surface-enhanced Raman scattering (SERS) spectra of bombesin (BN) and its six modified analogues ([D-Phe(12)]BN, [Tyr(4)]BN, [Tyr(4),D-Phe(12)]BN, [D-Phe(12),Leu(14)]BN, [Leu(13)-(R)-Leu(14)]BN, and [Lys(3)]BN) on a colloidal silver surface are reported and compared with SERS spectra of these species immobilized onto an ellectrochemically roughen silver electrode. Changes in enhancement and wavenumber of proper bands upon adsorption on different silver surfaces are consistent with BN and its analogues adsorption primarily through Trp(8). Slightly different adsorption states of these molecules are observed depending upon natural amino acids substitution.

View Article and Find Full Text PDF

This work describes the molecular structure of bombesin (BN) and its analogs on the basis of the absorption infrared and Raman results described below. In these analogues is replaced one ([D-Phe12]BN, [Tyr4]BN, and [Lys3]BN) or two ([Tyr4,D-Phe12]BN, [D-Phe12,Leu14]BN, and [Leu13-(R)-Leu14]BN) amino acid residues within the peptide chain with a synthetic amino acid, creating antagonists to bombesin, which are useful in the treatment of cancer. It is also used surface enhanced Raman scattering (SERS) to study the differences and changes in the vibrational spectra of BN and its analogs, which were attached to an electrochemically roughened silver surface as these peptides interacted with target proteins.

View Article and Find Full Text PDF

In an attempt to gain further insight into the nature of the low frequency vibrational modes of hemoglobin and its isolated subunits, a comprehensive study of several different isotopically labeled analogues has been undertaken and is reported herein. Specifically, the resonance Raman spectra, between 200 and 500 cm(-1), are reported for the deoxy and ligated (CO and O2) forms of the isolated alpha and beta subunits containing the natural abundance or various deuterated analogues of protoheme. The deuterated protoheme analogues studied include the 1,3,5,8-C2H3-protoheme (d12- protoheme), the 1,3-C2H3-protoheme (1,3-d6-protoheme), the 5,8-C2H3-protoheme (5,8-d6-protoheme), and the meso-C2H4-protoheme (d4-protoheme).

View Article and Find Full Text PDF

In this work, Raman spectroscopy (RS) was employed to characterize molecular structures of [Arg8]vasopressin (AVP) and its [Acc2,D-Arg8]AVP, [Acc3]AVP, and [Cpa1, Acc3]AVP analogues. The RS band assignments have been proposed. To determine the mechanism of adsorption of the above-mentioned compounds adsorbed on a colloidal silver surface, surface-enhanced Raman spectra (SERS) were measured.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) spectra were measured for monolayers of various amino acids: L-methionine (Met), L-cysteine (Cys), L-glycine (Gly), L-leucine (Leu), L-phenylalanine (Phe), and L-proline (Pro) and their homodipeptides (Met-Met, Cys-Cys, Gly-Gly, Leu-Leu, Phe-Phe, and Pro-Pro) deposited onto a colloidal gold surface. Orientation of amino acids and their homodipeptides, as well as specific-competitive interactions of their functional groups with the gold surface, were predicted by detailed spectral analysis of the obtained SERS spectra. The analysis performed allowed us to propose a particular surface geometry for each amino acid and homodipeptide on the gold surface.

View Article and Find Full Text PDF

We present a Raman and surface-enhanced Raman scattering (SERS) study of the following proteins containing S-S group(s): alpha chymotrypsin (alpha-CHT), insulin, lysozyme, oxytocin (OXT), Streptomyces subtilisin inhibitor (SSI), and trypsin inhibitor (STI). The SERS study is performed in order to understand the adsorption mechanism of the above-mentioned proteins on a colloidal silver surface. The SERS spectra presented here show bands associated mainly with aromatic amino acid vibrations.

View Article and Find Full Text PDF

Resonance Raman spectra are reported for a series of systematically deuterated analogues of myoglobin in its deoxy state as well as for its CO and O(2) adducts. Specifically, the myoglobin samples studied are those that have been reconstituted with deuterated protoheme analogues. These include the methine deuterated, protoheme-d4; analogue bearing C(2)H(3) groups at the 1, 3, 5, and 8 positions, protoheme-d12; the species bearing C(2)H(3) groups at the 1 and 3 positions only, 1,3-protoheme-d6; and the species bearing C(2)H(3) groups at the 5 and 8 positions only, 5,8-protoheme-d6.

View Article and Find Full Text PDF

In this work, we corrected the resonance Raman (RR) results presented earlier for deoxy mesoheme IX-reconstituted hemoglobin (mesoHb) alpha and beta subunits implied that mesohemes in these subunits undergo substantial structural changes upon formation of a hemoglobin tetramer (Biochemistry 29 (1990) 5087). We show that these data were probably due to the improper handling of the deoxy mesoheme subunit preparation. Additionally, we discuss the RR spectra of deoxy, oxy, and CO species of mesoheme IX-reconstituted myoglobin (mesoMb) and alpha and beta deoxy meso hemoglobin subunits, including their analogues with deuterium-substituted mesoheme IX in all methyl groups (d(12)).

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) spectra of methionine (Met) containing dipeptides: Met-X and X-Met, where X is: L-glycine (Gly), L-leucine (Leu), L-proline (Pro), and L-phenylalanine (Phe) are reported. Using pre-aggregated Ag colloid we obtained high-quality SERS spectra of these compounds spontaneously adsorbed on colloidal silver. Additionally, we measured Raman spectra (RS) of these heterodipeptides in a solid state as well as in acidic and basic solutions.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering spectra (SERS) were measured for various amino acids: L-methionine (Met), L-cysteine (Cys), Lglycine (Gly), L-leucine (Leu), L-phenylalanine (Phe), and L-proline (Pro) and their homodipeptides (Met-Met, Cys-Cys, Gly-Gly, LeuLeu, Phe-Phe, and Pro-Pro) in silver colloidal solutions. The geometry and orientation of the amino acids or dipeptides on the silver surface, and their specific interaction with the surface, were deducted by detailed spectral analysis of the SERS spectra. This analysis has allowed us to propose the particular surface geometry of amino acids or dipeptides and also implied that C-C bonds were almost parallel to the surface, as evidenced by the absence of marker bands in the skeletal C-C stretching region of the spectra.

View Article and Find Full Text PDF