This study explores the intricate coordination chemistry of sodium aminophenolate species and their significant role in the depolymerization of polylactide (PLA), offering novel insights into catalytic degradation processes. By examining sodium coordination entities, including dimers and larger aggregates such as tetramers, we reveal how structural modifications, particularly the manipulation of steric hindrances, influence the formation and stability of these complexes. The dimers, characterized by a unique four-center core (Na-O-Na-O), serve as a foundational motif, which is further elaborated to obtain complexes with varied coordination environments through strategic ligand design.
View Article and Find Full Text PDFIn this article, we explore theoretical validations of experimental findings pertaining to the classical corner-capping reactions of a commercially available heptaisobutyltrisilanol cage to mono-substituted phenylhepta(isobutyl)-POSS cages. Additionally, the process of opening a fully condensed cage is tracked to assess the possibility of isolating and separating the resulting isomers. The corner-capping reactions of potential silanotriols, both as monomers and dimers, and the impact of these structural motifs on their closing to bifunctional POSS cages are also investigated.
View Article and Find Full Text PDF