Motivated by the pair-density-wave (PDW) state found in the one-dimensional Kondo-Heisenberg chain, we report on a determinant quantum Monte Carlo study of pair fields for a two-dimensional half-filled Hubbard layer coupled to an itinerant, noninteracting layer with one electron per site. In a specific range of interlayer hopping, the pairing vertex associated with PDW order becomes more attractive than that for uniform d-wave pairing, although both remain subdominant to the leading antiferromagnetic correlations at half filling. Our result sheds light on where one potentially may find a PDW state in such a model.
View Article and Find Full Text PDFMany metallic quantum materials display anomalous transport phenomena that defy a Fermi liquid description. Here, we use numerical methods to calculate thermal and charge transport in the doped Hubbard model and observe a crossover separating high- and low-temperature behaviors. Distinct from the behavior at high temperatures, the Lorenz number [Formula: see text] becomes weakly doping dependent and less sensitive to parameters at low temperatures.
View Article and Find Full Text PDFAs primarily an electronic observable, the room-temperature thermopower S in cuprates provides possibilities for a quantitative assessment of the Hubbard model. Using determinant quantum Monte Carlo, we demonstrate agreement between Hubbard model calculations and experimentally measured room-temperature S across multiple cuprate families, both qualitatively in terms of the doping dependence and quantitatively in terms of magnitude. We observe an upturn in S with decreasing temperatures, which possesses a slope comparable to that observed experimentally in cuprates.
View Article and Find Full Text PDFThe characteristic excitation of a metal is its plasmon, which is a quantized collective oscillation of its electron density. In 1956, David Pines predicted that a distinct type of plasmon, dubbed a 'demon', could exist in three-dimensional (3D) metals containing more than one species of charge carrier. Consisting of out-of-phase movement of electrons in different bands, demons are acoustic, electrically neutral and do not couple to light, so have never been detected in an equilibrium, 3D metal.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2022
Charge density waves (CDWs) have been observed in nearly all families of copper-oxide superconductors. But the behavior of these phases across different families has been perplexing. In La-based cuprates, the CDW wavevector is an increasing function of doping, exhibiting the so-called Yamada behavior, while in Y- and Bi-based materials the behavior is the opposite.
View Article and Find Full Text PDFThe bilayer Hubbard model with electron-hole doping is an ideal platform to study excitonic orders due to suppressed recombination via spatial separation of electrons and holes. However, suffering from the sign problem, previous quantum Monte Carlo studies could not arrive at an unequivocal conclusion regarding the presence of phases with clear signatures of excitonic condensation in bilayer Hubbard models. Here, we develop a determinant quantum Monte Carlo algorithm for the bilayer Hubbard model that is sign-problem-free for equal and opposite doping in the two layers and study excitonic order and charge and spin density modulations as a function of chemical potential difference between the two layers, on-site Coulomb repulsion, and interlayer interaction.
View Article and Find Full Text PDFStrange or bad metallic transport, defined by incompatibility with the conventional quasiparticle picture, is a theme common to many strongly correlated materials, including high-temperature superconductors. The Hubbard model represents a minimal starting point for modeling strongly correlated systems. Here we demonstrate strange metallic transport in the doped two-dimensional Hubbard model using determinantal quantum Monte Carlo calculations.
View Article and Find Full Text PDFFermi surface (FS) topology is a fundamental property of metals and superconductors. In electron-doped cuprate Nd Ce CuO (NCCO), an unexpected FS reconstruction has been observed in optimal- and overdoped regime ( = 0.15-0.
View Article and Find Full Text PDFUnderstanding spin excitations and their connection to unconventional superconductivity have remained central issues since the discovery of cuprates. Direct measurement of the dynamical spin structure factor in the parent compounds can provide key information on important interactions relevant in the doped regime, and variations in the magnon dispersion have been linked closely to differences in crystal structure between families of cuprate compounds. Here, we elucidate the relationship between spin excitations and various controlling factors thought to be significant in high-T_{c} materials by systematically evaluating the dynamical spin structure factor for the three-orbital Hubbard model, revealing differences in the spin dispersion along the Brillouin zone axis and the diagonal.
View Article and Find Full Text PDFUpon doping, Mott insulators often exhibit symmetry breaking where charge carriers and their spins organize into patterns known as stripes. For high-transition temperature cuprate superconductors, stripes are widely suspected to exist in a fluctuating form. We used numerically exact determinant quantum Monte Carlo calculations to demonstrate dynamical stripe correlations in the three-band Hubbard model, which represents the local electronic structure of the copper-oxygen plane.
View Article and Find Full Text PDF