Sci Total Environ
December 2024
The metallurgy industry is a potent global source of particulate matter (PM) atmospheric emissions. A portion of this PM may settle in aquatic (SePM) carrying metal/metalloid particles and metallic nanoparticles. Surprisingly, this form of contamination has not received due attention from most environmental monitoring agencies.
View Article and Find Full Text PDFMar Pollut Bull
June 2024
The steel industry is a significant worldwide source of atmospheric particulate matter (PM). Part of PM may settle (SePM) and deposit metal/metalloid and metallic nanoparticles in aquatic ecosystems. However, such an air-to-water cross-contamination is not observed by most monitoring agencies.
View Article and Find Full Text PDFCooperative ligand binding to linear polymers is fundamental in many scientific disciplines, particularly biological and chemical physics and engineering. Such ligand binding interactions have been widely modeled using infinite one-dimensional (1D) Ising models even in cases where the linear polymers are more complex (e.g.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
July 2023
In squamate reptiles, extensive innervation of the heart and vascular beds allows for continuous modulation of the cardiovascular system by the autonomic nervous system. The systemic vasculature is the main target of excitatory sympathetic adrenergic fibers, while the pulmonary circulation has been described as less responsive to both nervous and humoral modulators. However, histochemical evidence has demonstrated the presence of adrenergic fibers in pulmonary circulation.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
November 2022
A decerebrate rattlesnake, Crotalus durissus, has previously been used as a model Squamate for cardiovascular studies. It enabled instrumentation for concomitant recordings of diverse variables that showed autonomic responses. However, to validate the preparation and its scope for use, it is necessary to assess how close its cardiovascular variables are to non-decerebrate snakes and the effectiveness of its autonomic responses.
View Article and Find Full Text PDFIt has been proposed that larger individuals within fish species may be more sensitive to global warming, as a result of limitations in their capacity to provide oxygen for aerobic metabolic activities. This could affect size distributions of populations in a warmer world but evidence is lacking. In Nile tilapia Oreochromis niloticus (n=18, mass range 21-313 g), capacity to provide oxygen for aerobic activities (aerobic scope) was independent of mass at an acclimation temperature of 26°C.
View Article and Find Full Text PDFMammals show clear changes in heart rate linked to lung ventilation, characterized as respiratory sinus arrhythmia (RSA). These changes are controlled in part by variations in the level of inhibitory control exerted on the heart by the parasympathetic arm of the autonomic nervous system (PNS). This originates from preganglionic neurons in the nucleus ambiguous that supply phasic, respiration-related activity to the cardiac branch of the vagus nerve, via myelinated, efferent fibres with rapid conduction velocities.
View Article and Find Full Text PDFAbstractUnderstanding the basis of vascular tonus regulation is fundamental to comprehending cardiovascular physiology. In the present study, we used the recently developed decerebrate rattlesnake preparation to investigate the role of nitric oxide (NO) in the control of vascular tonus in a squamate reptile. This preparation allowed multiple concomitant cardiovascular parameters to be monitored, while avoiding the deleterious effect of anesthetic drugs on autonomic modulation.
View Article and Find Full Text PDFWhen snakes digest large meals, heart rate is accelerated by withdrawal of vagal tone and an increased non-adrenergic-non-cholinergic tone that seems to stem from circulating blood-borne factors exerting positive chronotropic effects. To investigate whether this tonic elevation of heart rate impairs the ability for autonomic regulation of heart during digestion, we characterised heart rate responses to pharmacological manipulation of blood pressure in the snake Boa constrictor through serial injections of sodium nitroprusside and phenylephrine. Both fasting and digesting snakes responded with a robust tachycardia to hypotension induced by sodium nitroprusside, with digesting snakes attaining higher maximal heart rates than fasting snakes.
View Article and Find Full Text PDFAbstractThe South American rattlesnake, , has been successfully used as an experimental model to study control of the cardiovascular system in squamate reptiles. Recent technical advances, including equipment miniaturization, have lessened the impact of instrumentation on in vivo recordings, and an increased range of anesthetic drugs has improved recording conditions for in situ preparations. Nevertheless, any animal-based experimental approach has to manage limitations regarding the avoidance of pain and stress the stability of the preparation and duration of experiments and the potentially overriding effects of anesthesia.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
August 2020
Vascular tone in the reptilian pulmonary vasculature is primarily under cholinergic, muscarinic control exerted via the vagus nerve. This control has been ascribed to a sphincter located at the arterial outflow, but we speculated whether the vascular control in the pulmonary artery is more widespread, such that responses to acetylcholine and electrical stimulation, as well as the expression of muscarinic receptors, are prevalent along its length. Working on the South American rattlesnake (), we studied four different portions of the pulmonary artery (truncus, proximal, distal, and branches).
View Article and Find Full Text PDFNetworks of branched actin filaments formed by Arp2/3 complex generate and experience mechanical forces during essential cellular functions, including cell motility and endocytosis. External forces regulate the assembly and architecture of branched actin networks both in vitro and in cells. Considerably less is known about how mechanical forces influence the disassembly of actin filament networks, specifically, the dissociation of branches.
View Article and Find Full Text PDFWe investigated whether fatigue from sustained aerobic swimming provides a sub-lethal endpoint to define tolerance of acute warming in fishes, as an alternative to loss of equilibrium (LOE) during a critical thermal maximum (CT) protocol. Two species were studied, Nile tilapia () and pacu (). Each fish underwent an incremental swim test to determine gait transition speed (), where it first engaged the unsteady anaerobic swimming mode that preceded fatigue.
View Article and Find Full Text PDFHypoxia and mercury contamination often co-occur in tropical freshwater ecosystems, but the interactive effects of these two stressors on fish populations are poorly known. The effects of mercury (Hg) on recorded changes in the detailed form of the electrocardiogram (ECG) during exposure to progressive hypoxia were investigated in two Neotropical freshwater fish species, matrinxã, Brycon amazonicus and traíra, Hoplias malabaricus. Matrinxã were exposed to a sublethal concentration of 0.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
February 2020
Using long-term, remote recordings of heart rate (f) on fully recovered, undisturbed lizards, we identified several components of heart rate variability (HRV) associated with respiratory sinus arrhythmia (RSA): 1.) A peak in the spectral representation of HRV at the frequency range of ventilation. 2.
View Article and Find Full Text PDFAir-breathing and amphibious fishes are essential study organisms to shed insight into the required physiological shifts that supported the full transition from aquatic water-breathing fishes to terrestrial air-breathing tetrapods. While the origin of air-breathing in the evolutionary history of the tetrapods has received considerable focus, much less is known about the evolutionary physiology of air-breathing among fishes. This review summarizes recent advances within the field with specific emphasis on the cardiorespiratory regulation associated with air-breathing and terrestrial excursions, and how respiratory physiology of these living transitional forms are affected by development and personality.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
December 2019
Embryonic turtles have four distinct vascular beds that separately perfuse the developing embryo's body and the extra-embryonic yolk sac, amnion and chorioallantoic membrane (CAM). The mechanisms enabling differential regulation of blood flow through these separate beds, in order to meet the varying demands of the embryo during development, is of current interest. The present investigation followed the changes in blood flow distribution during an acute exposure to hypoxia and after α-adrenergic blockade.
View Article and Find Full Text PDFECG recordings were obtained using an implanted telemetry device from the South American rattlesnake, , held under stable conditions without restraining cables or interaction with researchers. Mean heart rate () recovered rapidly (<24 h) from anaesthesia and operative procedures. This preceded a more gradual development of heart rate variability (HRV), with instantaneous increasing during each lung ventilation cycle.
View Article and Find Full Text PDFStriated muscle contraction occurs when myosin undergoes a lever-type structural change. This process (the power stroke) requires ATP and is governed by the thin filament, a complex of actin, tropomyosin, and troponin. The authors have used a fast-mixing instrument to investigate the mechanism of regulation.
View Article and Find Full Text PDFThis study investigated the maturation of convective oxygen transport in embryos of the snapping turtle (). Measurements included: mass, oxygen consumption ( ), heart rate, blood oxygen content and affinity and blood flow distribution at 50%, 70% and 90% of the incubation period. Body mass increased exponentially, paralleled by increased cardiac mass and metabolic rate.
View Article and Find Full Text PDFThe present study has revealed that the lungfish has both structural and functional features of its system for physiological control of heart rate, previously considered solely mammalian, that together generate variability (HRV). Ultrastructural and electrophysiological investigation revealed that the nerves connecting the brain to the heart are myelinated, conferring rapid conduction velocities, comparable to mammalian fibers that generate instantaneous changes in heart rate at the onset of each air breath. These respiration-related changes in beat-to-beat cardiac intervals were detected by complex analysis of HRV and shown to maximize oxygen uptake per breath, a causal relationship never conclusively demonstrated in mammals.
View Article and Find Full Text PDFMetal pollutants have been considered one of the main factors underlying the depletion of biodiversity in natural populations unbalancing aquatic environments. The aim of this study was to evaluate the effects of exposure to inorganic Hg on myocardial contractility and the electrocardiogram (ECG) of two ecologically distinct Neotropical fish species, namely: matrinxã (Brycon amazonicus) and trahira (Hoplias malabaricus). Matrinxãs were exposed to a sublethal concentration of 0.
View Article and Find Full Text PDFJ Comp Physiol B
January 2018
The cardiovascular system of vertebrates is regulated by a vast number of regulatory factors, including histamine. In pythons, histamine induces a strong tachycardia and dilates the systemic vasculature, which resembles the cardiovascular response to the elevated metabolic rate during digestion. In fact, there is an important role of increased histaminergic tone on the heart during the initial 24 h of digestion in pythons.
View Article and Find Full Text PDFIndividual variation in sub-lethal sensitivity to the organophosphate pesticide trichlorfon was investigated in Nile tilapia, using critical swimming speed (U) as an indicator. Tilapia exposed for 96h to 500μgl trichlorfon at 26°C (Tcfn group, n=27) showed a significant decline in mean U, compared to their own control (pre-exposure) performance in clean water (-14.5±2.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
March 2017
Oxygen consumption (VO), heart rate (f), heart mass (M) and body mass (M) were measured during embryonic incubation and in hatchlings of green iguana (Iguana iguana). Mean f and VO were unvarying in early stage embryos. VO increased exponentially during the later stages of embryonic development, doubling by the end of incubation, while f was constant, resulting in a 2.
View Article and Find Full Text PDF