Publications by authors named "Edwin S L Chan"

As one of the most utilized disease-modifying anti-rheumatic drugs, methotrexate (MTX) has revolutionized the treatment of rheumatoid arthritis as well as many other non-rheumatic chronic inflammatory diseases. Far from a simple anti- proliferative agent as was once thought, our understanding of how it exerts its anti-inflammatory effects has grown over the years. The mechanisms of action of MTX are reviewed here, and we look at how this knowledge helps to explain some of its most common side effects.

View Article and Find Full Text PDF

Adenosine has an important role in inflammation and tissue remodeling and promotes dermal fibrosis by adenosine receptor (A2AR) activation. Adenosine may be formed intracellularly from adenine nucleotides or extracellularly through sequential phosphohydrolysis of released ATP by nucleoside triphosphate diphosphohydrolase (CD39) and ecto-5'-nucleotidase (CD73). Because the role of these ecto-enzymes in fibrosis appears to be tissue specific, we determined whether these ectonucleotidases were directly involved in diffuse dermal fibrosis.

View Article and Find Full Text PDF

Introduction: Adenosine, acting through the A(2A) receptor, promotes tissue matrix production in the skin and the liver and induces the development of dermal fibrosis and cirrhosis in murine models. Since expression of A(2A) receptors is increased in scleroderma fibroblasts, we examined the mechanisms by which the A(2A) receptor produces its fibrogenic effects.

Methods: The effects of A(2A) receptor ligation on the expression of the transcription factor, Fli1, a constitutive repressor for the synthesis of matrix proteins, such as collagen, is studied in dermal fibroblasts.

View Article and Find Full Text PDF

Methotrexate is a disease-modifying antirheumatic drug commonly used to treat inflammatory conditions such as rheumatoid arthritis which itself is linked to increased cardiovascular risk. Treatments that target inflammation may also impact the cardiovascular system. While methotrexate improves cardiovascular risk, inhibition of the cyclooxygenase (COX)-2 enzyme promotes atherosclerosis.

View Article and Find Full Text PDF

Skin fibrosis occurs in a variety of human diseases, most notably systemic sclerosis (SSc). The end stage of scleroderma in human skin consists of excess collagen deposition in the dermis with loss of adnexal structures and associated adipose tissue. The initiating factors for this process and the early stages are believed to occur through vascular injury and immune dysfunction with a dysregulated inflammatory response.

View Article and Find Full Text PDF

Methotrexate remains a cornerstone in the treatment of rheumatoid arthritis and other rheumatic diseases. Folate antagonism is known to contribute to the antiproliferative effects that are important in the action of methotrexate against malignant diseases, but concomitant administration of folic or folinic acid does not diminish the anti-inflammatory potential of this agent, which suggests that other mechanisms of action might be operative. Although no single mechanism is sufficient to account for all the anti-inflammatory activities of methotrexate, the release of adenosine from cells has been demonstrated both in vitro and in vivo.

View Article and Find Full Text PDF

Adenosine is an endogenous autocoid that regulates a multitude of bodily functions. Its anti-inflammatory actions are well known to rheumatologists since it mediates many of the anti-inflammatory effects of a number of antirheumatic drugs such as methotrexate. However, inflammatory and tissue regenerative responses are intricately linked, with wound healing being a prime example.

View Article and Find Full Text PDF

Atherosclerotic cardiovascular disease (ASCVD) contributes to morbidity and mortality in systemic lupus erythematosus (SLE). Immunologic derangements may disrupt cholesterol balance in vessel wall monocytes/macrophages and endothelium. We determined whether lupus plasma impacts expression of cholesterol 27-hydroxylase, an anti-atherogenic cholesterol-degrading enzyme that promotes cellular cholesterol efflux, in THP-1 human monocytes and primary human aortic endothelial cells (HAEC).

View Article and Find Full Text PDF

Atherosclerosis is a chronic progressive disease that is a major contributor to cardiac death. It is characterized by inflammation and cholesterol deposition in the arterial wall. Excess cholesterol accumulation occurs as a result of an imbalance between delivery and removal and leads to formation of lipid-laden foam cells.

View Article and Find Full Text PDF

Premature atherosclerotic cardiovascular disease (ASCVD) is a common and devastating complication of systemic lupus erythematosus (SLE). It is likely that immunologic derangements contribute to premature ASCVD in these patients, possibly by disrupting homeostatic mechanisms that orchestrate cholesterol balance in monocytes/macrophages in the artery wall. CD36, a macrophage scavenger receptor responsible for recognition and internalization of oxidized lipids, is a major participant in atherosclerotic foam cell formation.

View Article and Find Full Text PDF

Objective: To determine whether methotrexate (MTX) can overcome the atherogenic effects of cyclooxygenase 2 (COX-2) inhibitors and interferon-gamma (IFNgamma), both of which suppress cholesterol efflux protein and promote foam cell transformation in human THP-1 monocyte/macrophages.

Methods: Message and protein levels of the reverse cholesterol transport proteins cholesterol 27-hydroxylase and ATP-binding cassette transporter A1 (ABCA1) in THP-1 cells were evaluated by real-time polymerase chain reaction and immunoblot, respectively. Expression was evaluated in cells incubated in the presence or absence of the COX-2 inhibitor NS398 or IFNgamma, with and without MTX.

View Article and Find Full Text PDF

Peripheral blood fibrocytes are a newly identified circulating leukocyte subpopulation that migrates into injured tissue where it may display fibroblast-like properties and participate in wound healing and fibrosis of skin and other organs. Previous studies in our lab demonstrated that A(2A) receptor-deficient and A(2A) antagonist-treated mice were protected from developing bleomycin-induced dermal fibrosis, thus the aim of this study was to determine whether the adenosine A(2A) receptor regulates recruitment of fibrocytes to the dermis in this bleomycin-induced model of dermal fibrosis. Sections of skin from normal mice and bleomycin-treated wild type, A(2A) knockout and A(2A) antagonist-treated mice were stained for Procollagen alpha2 Type I and CD34 and the double stained cells, fibrocytes, were counted in the tissue sections.

View Article and Find Full Text PDF

In previous studies, we have demonstrated that adenosine and its receptors play a role in hepatic fibrosis. Here, we review evidence that toxin-induced increases in hepatic adenosine concentrations are generated from adenine nucleotides by the action of ecto-5'nucleotidase and thus that adenosine-mediated, toxin-induced hepatic fibrosis depends on extracellular conversion of adenine nucleotides to adenosine.

View Article and Find Full Text PDF

Adenosine is a potent modulator of inflammation and tissue repair. We have recently reported that activation of adenosine A(2A) receptors promotes collagen synthesis by human dermal fibroblasts and that blockade or deletion of this receptor in mice protects against bleomycin-induced dermal fibrosis, a murine model of scleroderma. Adenosine deaminase (ADA) is the principal catabolic enzyme for adenosine in vivo, and its deficiency leads to the spontaneous development of pulmonary fibrosis in mice.

View Article and Find Full Text PDF

Adenosine is a potent endogenous regulator of tissue repair that is released from injured cells and tissues. Hepatic fibrosis results from chronic hepatic injury, and we have previously reported that endogenously generated adenosine, acting at A(2A) receptors, plays a role in toxin-induced hepatic fibrosis. Adenosine may form intracellularly and then be transported to the extracellular space or it may form extracellularly from adenine nucleotides released from injured cells.

View Article and Find Full Text PDF

Prior studies indicate that adenosine and the adenosine A2A receptor play a role in hepatic fibrosis by a mechanism that has been proposed to involve direct stimulation of hepatic stellate cells (HSCs). The objective of this study was to determine whether primary hepatic stellate cells produce collagen in response to adenosine (via activation of adenosine A2A receptors) and to further determine the signaling mechanisms involved in adenosine A2A receptor-mediated promotion of collagen production. Cultured primary HSCs increase their collagen production after stimulation of the adenosine A2A receptor in a dose-dependent fashion.

View Article and Find Full Text PDF

Both selective cyclooxygenase (COX)-2 inhibitors and non-steroidal anti-inflammatory drugs (NSAIDs) have been beneficial pharmacological agents for many patients suffering from arthritis pain and inflammation. However, selective COX-2 inhibitors and traditional NSAIDs are both associated with heightened risk of myocardial infarction. Possible pro-atherogenic mechanisms of these inhibitors have been suggested, including an imbalance in prostanoid production leaving the pro-aggregatory prostaglandins unopposed, but the precise mechanisms involved have not been elucidated.

View Article and Find Full Text PDF
Article Synopsis
  • Adenosine is a substance in the body that helps with inflammation and healing but can also cause liver problems when too much is released.
  • In experiments, it was found that liver cells can produce more adenosine when exposed to certain harmful substances like alcohol and medications.
  • Blocking adenosine receptors, especially A(2A), can protect mice from liver damage, suggesting that targeting these receptors could help prevent serious liver diseases.
View Article and Find Full Text PDF

Background: Cholesterol 27-hydroxylase, an enzyme expressed at high levels by human monocytes/macrophages, provides a first line of defense against the development of atherosclerosis. Prior studies have suggested that the cytokine interferon-gamma (IFN-gamma) promotes atherosclerosis. We therefore examined the effect of IFN-g on macrophage foam cell formation and on expression of the anti-atherogenic 27-hydroxylase in THP-1 human monocytes/macrophages.

View Article and Find Full Text PDF

Mechanisms for the regulation of intracellular cholesterol levels in various types of brain and vascular cells are of considerable importance in our understanding of the pathogenesis of a variety of diseases, particularly atherosclerosis and Alzheimer's disease (AD). It is increasingly clear that conversion of brain cholesterol into 24-hydroxycholesterol and its subsequent release into the periphery is important for the maintenance of brain cholesterol homeostasis. Recent studies have shown elevated plasma concentrations of 24-hydroxycholesterol in patients with AD and vascular dementia, suggesting increased brain cholesterol turnover during neurodegeneration.

View Article and Find Full Text PDF

1 Nabumetone is a prodrug that is converted in vivo into 6-methoxy-2-naphthylacetic acid (6MNA), a cyclooxygenase inhibitor with anti-inflammatory properties. We tested the effects of nabumetone and 6MNA on the inflammatory responses of synovial fibroblasts (SFs). 2 Brief exposures to 6MNA (50-150 microm) had no effect on IL-1beta/TNF-alpha (each 20 ng ml(-1))-stimulated Erk activation.

View Article and Find Full Text PDF

Transport of cholesterol out of macrophages is critical for prevention of foam cell formation, the first step in the pathogenesis of atherosclerosis. Proteins involved in this process include cholesterol 27-hydroxylase and adenosine 5'-triphosphate-binding cassette transporter A1 (ABCA1). Proinflammatory cytokines and immune complexes (IC) down-regulate cholesterol 27-hydroxylase and impede cholesterol efflux from macrophages, leading to foam cell formation.

View Article and Find Full Text PDF

We examined the regulation of matrix metalloproteinase (MMP) production by mitogen-activated protein kinases and cyclooxygenases (COXs) in fibroblast-like synoviocytes (FLSCs). IL-1beta and TNF-alpha stimulated FLSC extracellular signal-regulated kinase (ERK) activation as well as MMP-1 and -13 release. Pharmacologic inhibitors of ERK inhibited MMP-1, but not MMP-13 expression.

View Article and Find Full Text PDF

Despite the recent introduction of biological response modifiers and potent new small-molecule antirheumatic drugs, the efficacy of methotrexate is nearly unsurpassed in the treatment of inflammatory arthritis. Although methotrexate was first introduced as an antiproliferative agent that inhibits the synthesis of purines and pyrimidines for the therapy of malignancies, it is now clear that many of the anti-inflammatory effects of methotrexate are mediated by adenosine. This nucleoside, acting at one or more of its receptors, is a potent endogenous anti-inflammatory mediator.

View Article and Find Full Text PDF