Publications by authors named "Edwin Michael"

Background: Lymphatic filariasis (LF) is a neglected tropical disease targeted for elimination as a public health problem by 2030. Although mass treatments have led to huge reductions in LF prevalence, some countries or regions may find it difficult to achieve elimination by 2030 owing to various factors, including local differences in transmission. Subnational projections of intervention impact are a useful tool in understanding these dynamics, but correctly characterizing their uncertainty is challenging.

View Article and Find Full Text PDF

Background: Lymphatic filariasis (LF) is a debilitating, poverty-promoting, neglected tropical disease (NTD) targeted for worldwide elimination as a public health problem (EPHP) by 2030. Evaluating progress towards this target for national programmes is challenging, due to differences in disease transmission and interventions at the subnational level. Mathematical models can help address these challenges by capturing spatial heterogeneities and evaluating progress towards LF elimination and how different interventions could be leveraged to achieve elimination by 2030.

View Article and Find Full Text PDF

Over the past decade, considerable progress has been made in the control, elimination, and eradication of neglected tropical diseases (NTDs). Despite these advances, most NTD programs have recently experienced important setbacks; for example, NTD interventions were some of the most frequently and severely impacted by service disruptions due to the coronavirus disease 2019 (COVID-19) pandemic. Mathematical modeling can help inform selection of interventions to meet the targets set out in the NTD road map 2021-2030, and such studies should prioritize questions that are relevant for decision-makers, especially those designing, implementing, and evaluating national and subnational programs.

View Article and Find Full Text PDF
Article Synopsis
  • - Onchocerciasis, commonly known as river blindness, significantly contributes to blindness and socio-economic challenges in sub-Saharan Africa, prompting international efforts for control and elimination.
  • - Initial strategies focused on controlling the black fly vectors that spread the disease, but the discovery of ivermectin led to mass drug administration (MDA) for communities affected by the disease.
  • - Recent research is exploring alternative, cost-effective, and environmentally-friendly methods for vector control that local communities can implement, which, when combined with ivermectin MDA, may speed up efforts to eliminate the disease.
View Article and Find Full Text PDF

The resurgence of the May 2021 COVID-19 wave in India not only pointed to the explosive speed with which SARS-CoV-2 can spread in vulnerable populations if unchecked, but also to the gross misreading of the status of the pandemic when decisions to reopen the economy were made in March 2021. In this combined modelling and scenario-based analysis, we isolated the population and policy-related factors underlying the May 2021 viral resurgence by projecting the growth and magnitude of the health impact and demand for hospital care that would have arisen if the spread was not impeded, and by evaluating the intervention options best able to curb the observed rapidly developing contagion. We show that only by immediately re-introducing a moderately high level of social mitigation over a medium-term period alongside a swift ramping up of vaccinations could the country be able to contain and ultimately end the pandemic safely.

View Article and Find Full Text PDF

We leveraged the ability of EPIFIL transmission models fit to field data to evaluate the use of the WHO Transmission Assessment Survey (TAS) for supporting Lymphatic Filariasis (LF) intervention stopping decisions. Our results indicate that understanding the underlying parasite extinction dynamics, particularly the protracted transient dynamics involved in shifts to the extinct state, is crucial for understanding the impacts of using TAS for determining the achievement of LF elimination. These findings warn that employing stopping criteria set for operational purposes, as employed in the TAS strategy, without a full consideration of the dynamics of extinction could seriously undermine the goal of achieving global LF elimination.

View Article and Find Full Text PDF

Background: Mass drug administration (MDA) is the main strategy towards lymphatic filariasis (LF) elimination. Progress is monitored by assessing microfilaraemia (Mf) or circulating filarial antigenaemia (CFA) prevalence, the latter being more practical for field surveys. The current criterion for stopping MDA requires <2% CFA prevalence in 6- to 7-year olds, but this criterion is not evidence-based.

View Article and Find Full Text PDF

The advent and distribution of vaccines against SARS-CoV-2 in late 2020 was thought to represent an effective means to control the ongoing COVID-19 pandemic. This optimistic expectation was dashed by the omicron waves that emerged over the winter of 2021/2020 even in countries that had managed to vaccinate a large fraction of their populations, raising questions about whether it is possible to use scientific knowledge along with predictive models to anticipate changes and design management measures for the pandemic. Here, we used an extended SEIR model for SARS-CoV-2 transmission sequentially calibrated to data on cases and interventions implemented in Florida until Sept.

View Article and Find Full Text PDF

The control of the initial outbreak and spread of SARS-CoV-2/COVID-19 via the application of population-wide non-pharmaceutical mitigation measures have led to remarkable successes in dampening the pandemic globally. However, with countries beginning to ease or lift these measures fully to restart activities, concern is growing regarding the impacts that such reopening of societies could have on the subsequent transmission of the virus. While mathematical models of COVID-19 transmission have played important roles in evaluating the impacts of these measures for curbing virus transmission, a key need is for models that are able to effectively capture the effects of the spatial and social heterogeneities that drive the epidemic dynamics observed at the local community level.

View Article and Find Full Text PDF

The COVID-19 pandemic has placed epidemiologists, modelers, and policy makers at the forefront of the global discussion of how to control the spread of coronavirus. The main challenges confronting modelling approaches include real-time projections of changes in the numbers of cases, hospitalizations, and fatalities, the consequences of public health policy, the understanding of how best to implement varied non-pharmaceutical interventions and potential vaccination strategies, now that vaccines are available for distribution. Here, we: (i) review carefully selected literature on COVID-19 modeling to identify challenges associated with developing appropriate models along with collecting the fine-tuned data, (ii) use the identified challenges to suggest prospective modeling frameworks through which adaptive interventions such as vaccine strategies and the uses of diagnostic tests can be evaluated, and (iii) provide a novel Multiresolution Modeling Framework which constructs a multi-objective optimization problem by considering relevant stakeholders' participatory perspective to carry out epidemic nowcasting and future prediction.

View Article and Find Full Text PDF

The 10-item Body Appreciation Scale-2 (BAS-2) is a measurement for individuals to self-report the extent to which they accept and respect their bodies. Although the BAS-2 has been translated into the Malay language and found to have promising qualities, the psychometric characteristics of the English version of BAS-2 remain unknown in the Malaysian context. The present study thus administered the English version BAS-2 and selfie-editing frequency scale to 797 individuals aged 18 to 56 years old in Malaysia.

View Article and Find Full Text PDF

Locally tailored interventions for neglected tropical diseases (NTDs) are becoming increasingly important for ensuring that the World Health Organization (WHO) goals for control and elimination are reached. Mathematical models, such as those developed by the NTD Modelling Consortium, are able to offer recommendations on interventions but remain constrained by the data currently available. Data collection for NTDs needs to be strengthened as better data are required to indirectly inform transmission in an area.

View Article and Find Full Text PDF

Background: In view of the current global coronavirus disease 2019 pandemic, mass drug administration interventions for neglected tropical diseases, including lymphatic filariasis (LF), have been halted. We used mathematical modelling to estimate the impact of delaying or cancelling treatment rounds and explore possible mitigation strategies.

Methods: We used three established LF transmission models to simulate infection trends in settings with annual treatment rounds and programme delays in 2020 of 6, 12, 18 or 24 months.

View Article and Find Full Text PDF

We study a general multi-host model of visceral leishmaniasis including both humans and animals, and where host and vector characteristics are captured via host competence along with vector biting preference. Additionally, the model accounts for spatial heterogeneity in human population and heterogeneity in biting behaviour of sandflies. We then use parameters for visceral leishmaniasis in the Indian subcontinent as an example and demonstrate that the model exhibits backward bifurcation, i.

View Article and Find Full Text PDF

Introduction: The World Health Organization (WHO) recommends Transmission Assessment Surveys (TAS) to determine when an evaluation unit (EU) (a designated population survey area) has achieved elimination of transmission of the vector-borne macroparasitic disease Lymphatic Filariasis (LF). These determinations are based on combining data from multiple survey units within an EU; it is unclear how underlying cluster-level variation influences the outcome of the TAS at EU level. We simulate LF infection distribution in an EU and compare three methods for assessing whether LF elimination has occurred based on currently recommended decision thresholds and sampling methods.

View Article and Find Full Text PDF

Vector-borne diseases that occur in humans, as well as in domestic and wild reservoir hosts, cause a significant concern in public health, veterinary health, and ecological health in bio-diverse environments. The majority of vector-borne zoonotic diseases are transmitted among diverse host species, but different hosts have their own ability to transmit pathogens and to attract vectors. These combined transmission mechanisms in hosts and vectors are often called "host competencies" and "vector-feeding preferences.

View Article and Find Full Text PDF

Due to the COVID-19 pandemic, many key neglected tropical disease (NTD) activities have been postponed. This hindrance comes at a time when the NTDs are progressing towards their ambitious goals for 2030. Mathematical modelling on several NTDs, namely gambiense sleeping sickness, lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminthiases (STH), trachoma, and visceral leishmaniasis, shows that the impact of this disruption will vary across the diseases.

View Article and Find Full Text PDF

Although there is increasing importance placed on the use of mathematical models for the effective design and management of long-term parasite elimination, it is becoming clear that transmission models are most useful when they reflect the processes pertaining to local infection dynamics as opposed to generalized dynamics. Such localized models must also be developed even when the data required for characterizing local transmission processes are limited or incomplete, as is often the case for neglected tropical diseases, including the disease system studied in this work, viz. lymphatic filariasis (LF).

View Article and Find Full Text PDF

Concern is emerging regarding the challenges posed by spatial complexity for modelling and managing the area-wide elimination of parasitic infections. While this has led to calls for applying heterogeneity-based approaches for addressing this complexity, questions related to spatial scale, the discovery of locally-relevant models, and its interaction with options for interrupting parasite transmission remain to be resolved. We used a data-driven modelling framework applied to infection data gathered from different monitoring sites to investigate these questions in the context of understanding the transmission dynamics and efforts to eliminate Simulium neavei- transmitted onchocerciasis, a macroparasitic disease that causes river blindness in Western Uganda and other regions of Africa.

View Article and Find Full Text PDF

The low prevalence levels associated with lymphatic filariasis elimination pose a challenge for effective disease surveillance. As more countries achieve the World Health Organization criteria for halting mass treatment and move on to surveillance, there is increasing reliance on the utility of transmission assessment surveys (TAS) to measure success. However, the long-term disease outcomes after passing TAS are largely untested.

View Article and Find Full Text PDF

Attention is increasingly focusing on how best to accelerate progress toward meeting the WHO's 2030 goals for neglected tropical diseases (NTDs). For river blindness, a major NTD targeted for elimination, there is a long history of using vector control to suppress transmission, but traditional larvicide-based approaches are limited in their utility. One innovative and sustainable approach, "slash and clear", involves clearing vegetation from breeding areas, and recent field trials indicate that this technique very effectively reduces the biting density of Simulium damnosum s.

View Article and Find Full Text PDF

Background: Salt fortified with the drug, diethylcarbamazine (DEC), and introduced into a competitive market has the potential to overcome the obstacles associated with tablet-based Lymphatic Filariasis (LF) elimination programs. Questions remain, however, regarding the economic viability, production capacity, and effectiveness of this strategy as a sustainable means to bring about LF elimination in resource poor settings.

Methodology And Principal Findings: We evaluated the performance and effectiveness of a novel social enterprise-based approach developed and tested in Léogâne, Haiti, as a strategy to sustainably and cost-efficiently distribute DEC-medicated salt into a competitive market at quantities sufficient to bring about the elimination of LF.

View Article and Find Full Text PDF

Background: Individual helminth infections are ubiquitous in the tropics; geographical overlaps in endemicity and epidemiological reports suggest areas endemic for multiple helminthiases are also burdened with high prevalences of intestinal protozoan infections, malaria, tuberculosis (TB), and human immunodeficiency virus (HIV). Despite this, pathogens tend to be studied in isolation, and there remains a need for a better understanding of the community ecology and health consequences of helminth polyparasitism to inform the design of effective parasite control programs.

Methodology: We performed meta-analyses to (i) evaluate the commonality of polyparasitism for helminth-helminth, helminth-intestinal protozoa, helminth-malaria, helminth-TB, and helminth-HIV co-infections, (ii) assess the potential for interspecies interactions among helminth-helminth and helminth-intestinal protozoan infections, and (iii) determine the presence and magnitude of association between specific parasite pairs.

View Article and Find Full Text PDF

Soil-transmitted helminth (STH) infections and malaria are parasitic diseases with enormous global health burdens. Research has demonstrated a relationship between each of these parasites and the gut microbiome, suggesting that the gut microbiota may be implicated in governing host susceptibility to diverse pathogens, and perhaps even coinfection by different pathogens, through similar microbiome-influenced pathways. Here, we have derived a first microbiome community profile associated with STH infections in Odisha, India, and tested the hypothesis that the gut microbiome can modulate host susceptibility to multiple parasite infections through the same pathways.

View Article and Find Full Text PDF

Background: Melioidosis, a fatal infectious disease caused by Burkholderia pseudomallei, is increasingly diagnosed in tropical regions. However, data on risk factors and the geographic epidemiology of the disease are still limited. Previous studies have also largely been based on the analysis of case series data.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionj9le610p1nh1ifdaa8ltca7v73lchs86): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once