Publications by authors named "Edwin M Horwitz"

Single-cell RNA-sequencing (scRNAseq) was first introduced in 2009 and has evolved with many technological advancements over the last decade. Not only are there several scRNAseq platforms differing in many aspects, but there are also a large number of computational pipelines available for downstream analyses which are being developed at an exponential rate. Such computational data appear in many scientific publications in virtually every field of study; thus, investigators should be able to understand and interpret data in this rapidly evolving field.

View Article and Find Full Text PDF

Vγ9Vδ2 T cells represent a promising cancer therapy platform because the implementation of allogenic, off-the-shelf product candidates is possible. However, intravenous administration of human Vγ9Vδ2 T cells manufactured under good manufacturing practice (GMP)-compliant, serum-free conditions are not tested easily in most mouse models, mainly because they lack the ability to migrate from the blood to tissues or tumors. We demonstrate that these T cells do not migrate from the circulation to the mouse bone marrow (BM), the site of many malignancies.

View Article and Find Full Text PDF

Reports of T cell malignancies after CAR-T cell therapy should be investigated, but existing data from follow-up studies suggest a low risk compared with other cancer treatments.

View Article and Find Full Text PDF

Mitochondria use different substrates for energy production and intermediatory metabolism according to the availability of nutrients and oxygen levels. The role of mitochondrial metabolic flexibility for CD8 T cell immune response is poorly understood. Here, we report that the deletion or pharmacological inhibition of protein tyrosine phosphatase, mitochondrial 1 (PTPMT1) significantly decreased CD8 effector T cell development and clonal expansion.

View Article and Find Full Text PDF

Background Aims: Mesenchymal stromal cells (MSCs) are polymorphic, adherent cells with the capability to stimulate tissue regeneration and modulate immunity. MSCs have been broadly investigated for potential therapeutic applications, particularly immunomodulatory properties, wound healing and tissue regeneration. The exact physiologic role of MSCs, however, remains poorly understood, and this gap in knowledge significantly impedes the rational development of therapeutic cells.

View Article and Find Full Text PDF
Article Synopsis
  • Obesity can make psoriasis, a skin condition, worse by affecting special immune cells called Treg cells that help control skin inflammation.
  • Researchers discovered that Treg cells in the skin have a specific protein called PPARγ that helps them stop inflammation caused by another type of immune cell.
  • When mice eat a fatty diet, the number of these helpful Treg cells decreases, leading to more skin inflammation, but using these cells' anti-inflammatory abilities could help treat skin problems linked to obesity.
View Article and Find Full Text PDF

Extracellular vesicles (EVs) released by bone marrow stromal cells (BMSCs) have been shown to act as a transporter of bioactive molecules such as RNAs and proteins in the therapeutic actions of BMSCs in various diseases. Although EV therapy holds great promise to be a safer cell-free therapy overcoming issues related to cell therapy, manufacturing processes that offer scalable and reproducible EV production have not been established. Robust and scalable BMSC manufacturing methods have been shown to enhance EV production; however, the effects on EV quality remain less studied.

View Article and Find Full Text PDF

Olfactory neuroblastoma (ONB) is a rare neuroepithelial-derived malignancy that usually presents in the nasal cavity. The rarity of ONB has led to conflicting reports regarding associations of patient age and ONB survival and outcome. Moreover, long-term outcomes of chemotherapy and other treatment modalities are speculated.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) possess remarkable tumor tropism, making them ideal vehicles to deliver tumor-targeted therapeutic agents; however, their value in clinical medicine has yet to be realized. A barrier to clinical utilization is that only a small fraction of infused MSCs ultimately localize to the tumor. In an effort to overcome this obstacle, we sought to enhance MSC trafficking by focusing on the factors that govern MSC arrival within the tumor microenvironment.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are spindle-shaped, plastic-adherent cells with potent immunosuppressive activity both and . MSCs have been employed as a cellular immunotherapy in diverse preclinical models and clinical trials, but most commonly as agents for the prophylaxis or therapy of graft versus host disease after hematopoietic cell transplantation. In addition to the oft studied secreted cytokines, several metabolic pathways intrinsic to MSCs, notably indoleamine 2,3-dioxygenase, prostaglandin E2, hypoxia-inducible factor 1 α, heme oxygenase-1, as well as energy-generating metabolism, have been shown to play roles in the immunomodulatory activity of MSCs.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are widely recognized to possess potent immunomodulatory activity, as well as to stimulate repair and regeneration of diseased or damaged tissue. These fundamental properties suggest important applications in hematopoietic cell transplantation. Although the mechanisms of therapeutic activity in vivo are yet to be fully elucidated, MSCs seem to suppress lymphocytes by paracrine mechanisms, including secreted mediators and metabolic modulators.

View Article and Find Full Text PDF

Nascent advanced therapies, including regenerative medicine and cell and gene therapies, rely on the production of cells in bioreactors that are highly heterogeneous in both space and time. Unfortunately, advanced therapies have failed to reach a wide patient population due to unreliable manufacturing processes that result in batch variability and cost prohibitive production. This can be attributed largely to a void in existing process analytical technologies (PATs) capable of characterizing the secreted critical quality attribute (CQA) biomolecules that correlate with the final product quality.

View Article and Find Full Text PDF

Identified 50 years ago, mesenchymal stromal/stem cells (MSCs) immediately generated a substantial interest among the scientific community because of their differentiation plasticity and hematopoietic supportive function. Early investigations provided evidence of a relatively low engraftment rate and a transient benefit for challenging congenital and acquired diseases. The reasons for these poor therapeutic benefits forced the entire field to reconsider MSC mechanisms of action together with their ex vivo manipulation procedures.

View Article and Find Full Text PDF

Background: The ex vivo expansion potential of mesenchymal stromal/stem cells (MSC) together with their differentiation and secretion properties makes these cells an attractive tool for transplantation and tissue engineering. Although the use of MSC is currently being tested in a growing number of clinical trials, it is still desirable to identify molecular markers that may help improve their performance both in vitro and after transplantation.

Methods: Recently, HOXB7 was identified as a master player driving the proliferation and differentiation of bone marrow mesenchymal progenitors.

View Article and Find Full Text PDF

Pancreatic cancer is the fourth leading cause of cancer death in western countries with more than 100,000 new cases per year in Europe and a mortality rate higher than 90%. In this scenario, advanced therapies based on gene therapies are emerging, thanks to a better understanding of tumour architecture and cancer cell alterations. We have demonstrated the efficacy of an innovative approach for pancreatic cancer based on mesenchymal stromal cells (MSC) genetically engineered to produce TNF-related Apoptosis Inducing Ligand (TRAIL).

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is still one of the most aggressive adult cancers with an unacceptable prognosis. For this reason novel therapies accounting for PDAC peculiarities, such as the relevant stromal reaction, are urgently needed. Here adipose mesenchymal stromal/stem cells (AD-MSC) have been armed to constantly release a soluble trimeric and multimeric variant of the known anti-cancer TNF-related apoptosis-inducing ligand (sTRAIL).

View Article and Find Full Text PDF

Tumor targeting by genetically modified mesenchymal stromal/stem cells (MSCs) carrying anti-cancer molecules represents a promising cell-based strategy. We previously showed that the pro-apoptotic agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can be successfully delivered by MSCs to cancer sites. While the interaction between TRAIL and its receptors is clear, more obscure is the way in which MSCs can selectively target tumors and their antigens.

View Article and Find Full Text PDF

Neuroblastoma, the most common extracranial solid tumor in childhood, remains a therapeutic challenge. However, one promising patient treatment strategy is the delivery of anti-tumor therapeutic agents via mesenchymal stromal cell (MSC) therapy. MSCs have been safely used to treat genetic bone diseases such as osteogenesis imperfecta, cardiovascular diseases, autoimmune diseases, and cancer.

View Article and Find Full Text PDF
Article Synopsis
  • The study suggests that hematopoietic cell transplantation (HCT) performed before the appearance of neurological symptoms in children with OSTM1 osteopetrosis is ineffective in stopping the progression of neurological issues.
  • This indicates that the timing of HCT may not significantly alter the course of neurological deterioration in these patients.
  • Further research may be needed to explore alternative treatments or interventions to address neurological symptoms associated with OSTM1 osteopetrosis.
View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) reside in specialized microenvironments within the marrow designated as stem cell niches, which function to support HSCs at homeostasis and promote HSC engraftment after radioablation. We previously identified marrow space remodeling after hematopoietic ablation, including osteoblast thickening, osteoblast proliferation, and megakaryocyte migration to the endosteum, which is critical for effective engraftment of donor HSCs. To further evaluate the impact of hematopoietic cells on marrow remodeling, we used a transgenic mouse model (CD45Cre/iDTR) to selectively deplete hematopoietic cells in situ.

View Article and Find Full Text PDF

Background: Systemic infusion of mesenchymal stromal cells (MSCs) has been shown to induce acute acceleration of growth velocity in children with osteogenesis imperfecta (OI) despite minimal engraftment of infused MSCs in bones. Using an animal model of OI we have previously shown that MSC infusion stimulates chondrocyte proliferation in the growth plate and that this enhanced proliferation is also observed with infusion of MSC conditioned medium in lieu of MSCs, suggesting that bone growth is due to trophic effects of MSCs. Here we sought to identify the trophic factor secreted by MSCs that mediates this therapeutic activity.

View Article and Find Full Text PDF

Background: Heart valves are dynamic structures that open and close over 100 000 times a day to maintain unidirectional blood flow during the cardiac cycle. Function is largely achieved by highly organized layers of extracellular matrix that provide the necessary biomechanical properties. Homeostasis of valve extracellular matrix is mediated by valve endothelial and interstitial cell populations, and although the embryonic origins of these cells are known, it is not clear how they are maintained after birth.

View Article and Find Full Text PDF

Mesenchymal stem/stromal cells (MSCs) are widely studied by both academia and industry for a broad array of clinical indications. The collective body of data provides compelling evidence of the clinical safety of MSC therapy. However, generally accepted proof of therapeutic efficacy has not yet been reported.

View Article and Find Full Text PDF

Incidence and severity of transplant-associated thrombotic microangiopathy (TA-TMA) in patients with hemoglobinopathies receiving hematopoietic cell transplant is unknown. We report the outcomes for two patients with TA-TMA who received eculizumab. A 2.

View Article and Find Full Text PDF