Publications by authors named "Edwin L Thomas"

Multiwalled carbon nanotube (MWNT) aerogel mats were irradiated with carbon ions to explore the effect of irradiation-induced sp bonds and sp bond defects on ultrahigh strain rate mechanical properties. Energy dissipation was measured using a microprojectile impact test. Specific penetration energy [Formula: see text] increased strongly with irradiation with a maximum [Formula: see text] of ~26 megajoules per kilogram, over 200% higher than the previous best energy-absorbing material of pristine MWNT mats and at least an order of magnitude higher than any other material tested at the microscale.

View Article and Find Full Text PDF

Amphiphiles self-assemble into a variety of bicontinuous mesophases whose equilibrium structures take the form of high-symmetry cubic networks. Here, we show that the symmetry-breaking distortions in these systems give rise to anomalously large, nonaffine collective deformations, which we argue to be a generic consequence of "mass equilibration" within deformed networks. We propose and study a minimal "liquid network" model of bicontinuous networks, in which acubic distortions are modeled by the relaxation of residually stressed mechanical networks with constant-tension bonds.

View Article and Find Full Text PDF

Transitions between gyroid and diamond intercatenated double network phases occur in many types of soft matter, but to date, the structural pathway and the crystallographic relationships remain unclear. Slice and view scanning electron microscopy tomography of a diblock copolymer affords monitoring of the evolving shape of the intermaterial dividing surface, allowing structural characterization of both the majority and minority domains. Two trihedral malleable mesoatoms combine to form a single tetrahedral mesoatom in a volume additive manner while preserving network topology, as the types of loops, the number of mesoatoms in a loop, minority domain strut lengths, and directions that connect a given mesoatom to its neighbors evolve across a 150 nm wide transition zone (TZ).

View Article and Find Full Text PDF

By utilizing bicontinuous and nanoporous ordered nanonetworks, such as double gyroid (DG) and double diamond (DD), metamaterials with exceptional optical and mechanical properties can be fabricated through the templating synthesis of functional materials. However, the volume fraction range of DG in block copolymers is significantly narrow, making it unable to vary its porosity and surface-to-volume ratio. Here, the theoretically limited structural volume of the DG phase in coil-coil copolymers is overcome by enlarging the conformational asymmetry through the association of mesogens, providing fast access to achieving flexible structured materials of ultra-high porosities.

View Article and Find Full Text PDF

A twin boundary (TB) is a common low energy planar defect in crystals including those with the atomic diamond structure (C, Si, Ge, etc.). We study twins in a self-assembled soft matter block copolymer (BCP) supramolecular crystal having the diamond (DD) structure, consisting of two translationally shifted, interpenetrating diamond networks of the minority polydimethyl siloxane block embedded in a polystyrene block matrix.

View Article and Find Full Text PDF

Stimuli-interactive structural color (SC) of a block copolymer (BCP) photonic crystal (PC) uses reversible alteration of the PC using external fluids and applied forces. The origin of the diffusional pathways of a stimulating fluid into a BCP PC has not been examined. Here, we directly visualize the vertically oriented screw dislocations in a one-dimensional lamellar BCP PC that facilitate the rapid response of visible SC.

View Article and Find Full Text PDF

Two-dimensional (2D) rigid polymers provide an opportunity to translate the high-strength, high-modulus mechanical performance of classic rigid-rod 1D polymers across a plane by extending covalent bonding into two dimensions while simultaneously reducing density due to microporosity by structural design. Thus far, this potential has remained elusive because of the challenge of producing high-quality 2D polymer thin films, particularly those with irreversible, rigid benzazole linkages. Here, we present a facile two-step process that allows the deposition of a uniform intermediate film network via reversible, non-covalent interactions, followed by a subsequent solid-state annealing step that facilitates the irreversible conversion to a 2D covalently bonded polymer product with benzoxazole linkages.

View Article and Find Full Text PDF

Herein, we aim to develop a facile method for the fabrication of mechanical metamaterials from templated polymerization of thermosets including phenolic and epoxy resins using self-assembled block copolymer, polystyrene-polydimethylsiloxane with tripod network (gyroid), and tetrapod network (diamond) structures, as templates. Nanoindentation studies on the nanonetwork thermosets fabricated reveal enhanced energy dissipation from intrinsic brittle thermosets due to the deliberate structuring; the calculated energy dissipation for gyroid phenolic resins is 0.23 nJ whereas the one with diamond structure gives a value of 0.

View Article and Find Full Text PDF

Thin layered mats comprised of an interconnected meandering network of multiwall carbon nanotubes (MWCNT) are subjected to a hypersonic micro-projectile impact test. The mat morphology is highly compliant and while this leads to rather modest quasi-static mechanical properties, at the extreme strain rates and large strains resulting from ballistic impact, the MWCNT structure has the ability to reconfigure resulting in extraordinary kinetic energy (KE) absorption. The KE of the projectile is dissipated via frictional interactions, adiabatic heating, tube stretching, and ultimately fracture of taut tubes and the newly formed fibrils.

View Article and Find Full Text PDF

Periodic gyroid network materials have many interesting properties (band gaps, topologically protected modes, superior charge and mass transport, and outstanding mechanical properties) due to the space-group symmetries and their multichannel triply continuous morphology. The three-dimensional structure of a twin boundary in a self-assembled polystyrene--polydimethylsiloxane (PS-PDMS) double-gyroid (DG) forming diblock copolymer is directly visualized using dual-beam scanning microscopy. The reconstruction clearly shows that the intermaterial dividing surface (IMDS) is smooth and continuous across the boundary plane as the pairs of chiral PDMS networks suddenly change their handedness.

View Article and Find Full Text PDF

Matrix-free assemblies of polymer-grafted nanoparticles (PGNs) enable mechanically robust materials for a variety of structural, electronic, and optical applications. Recent quasi-static mechanical studies have identified the key parameters that enhance canopy entanglement and promote plasticity of the PGNs below . Here we experimentally explore the high-strain-rate shock impact behavior of polystyrene grafted NPs and compare their energy absorption capabilities to that of homopolystyrene for film thicknesses ranging from 75 to 550 nm and for impact velocities from 350 to 800 m/s.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are multipotent cells which can proliferate and replace dead cells in the body. MSCs also secrete immunomodulatory molecules, creating a regenerative microenvironment that has an excellent potential for tissue regeneration. MSCs can be easily isolated and grown in vitro for various applications.

View Article and Find Full Text PDF

To the best of our knowledge, this is the very first time that a thorough study of the synthetic procedures, molecular and thermal characterization, followed by structure/properties relationship for symmetric and non-symmetric second generation (2-G) dendritic terpolymers is reported. Actually, the synthesis of the non-symmetric materials is reported for the first time in the literature. Anionic polymerization enables the synthesis of well-defined polymers that, despite the architecture complexity, absolute control over the average molecular weight, as well as block composition, is achieved.

View Article and Find Full Text PDF

Nanonetwork-structured materials can be found in nature and synthetic materials. A double gyroid (DG) with a pair of chiral networks but opposite chirality can be formed from the self-assembly of diblock copolymers. For triblock terpolymers, an alternating gyroid (G) with two chiral networks from distinct end blocks can be formed; however, the network chirality could be positive or negative arbitrarily, giving an achiral phase.

View Article and Find Full Text PDF

The development of a lightweight, low-power, user-interactive three-dimensional (3D) touchless display in which a human stimulus can be detected and simultaneously visualized in noncontact mode is of great interest. Here, we present a user-interactive 3D touchless sensing display based on multiorder reflection structural colors (SCs) of a thin, solid-state block copolymer (BCP) photonic crystal (PC). Full-visible-range SCs are developed in a BCP PC consisting of alternating lamellae, one of which contains a chemically cross-linked, interpenetrated hydrogel network.

View Article and Find Full Text PDF

The synthesis, molecular and morphological characterization of a 3-miktoarm star terpolymer of polystyrene (PS, M¯n = 61.0 kg/mol), polybutadiene (PB, M¯n = 38.2 kg/mol) and polyisoprene (PI, M¯n = 29.

View Article and Find Full Text PDF

Despite significant effort devoted to developing new treatments and procedures, cardiac disease is still one of the leading causes of death in the world. The loss of myocytes due to ischemic injury remains a major therapeutic challenge. However, cell-based therapy to repair the injured heart has shown significant promise in basic and translation research and in clinical trials.

View Article and Find Full Text PDF

Spider silks are remarkable materials designed by nature to have extraordinary elasticity. Their elasticity, however, remains poorly understood, as typical stress-strain experiments only allow access to the axial Young's modulus. In this work, micro-Brillouin light spectroscopy (micro-BLS), a noncontact, nondestructive technique, is utilized to probe the direction-dependent phonon propagation in the spider silk and hence solve its full elasticity.

View Article and Find Full Text PDF
Article Synopsis
  • Supramolecular soft crystals are complex, periodic structures formed through the hierarchical assembly of various components, sharing similar features and properties with traditional hard crystals, such as lattices and band structures.
  • The study utilizes slice-and-view microscopy to analyze the micrometre-scale morphology of a block copolymer double gyroid soft crystal, providing detailed insights into both its supra-unit and sub-unit cell structures.
  • Key findings reveal that soft crystals like the double gyroid exhibit a non-affine mode of symmetry breaking that allows them to deform more readily under stress compared to the rigid structures of hard crystals, maintaining local correlations despite significant distortions.
View Article and Find Full Text PDF

The ability to control and direct acoustic energy is essential for many engineering applications such as vibration and noise control, invisibility cloaking, acoustic sensing, energy harvesting, and phononic switching and rectification. The realization of acoustic regulators requires overcoming fundamental challenges inherent to the time-reversal nature of wave equations. Typically, this is achieved by utilizing either a parameter that is odd-symmetric under time-reversal or by introducing passive nonlinearities.

View Article and Find Full Text PDF

We explore the generality of the influence of segment chirality on the self-assembled structure of achiral-chiral diblock copolymers. Poly(cyclohexylglycolide) (PCG)-based chiral block copolymers (BCPs*), poly(benzyl methacrylate)--poly(d-cyclohexylglycolide) (PBnMA-PDCG) and PBnMA--poly(l-cyclohexyl glycolide) (PBnMA-PLCG), were synthesized for purposes of systematic comparison with polylactide (PLA)-based BCPs*, previously shown to exhibit chirality transfer from monomeric unit to the multichain domain morphology. Opposite-handed PCG helical chains in the enantiomeric BCPs* were identified by the vibrational circular dichroism (VCD) studies revealing transfer from chiral monomers to chiral intrachain conformation.

View Article and Find Full Text PDF

Triply-periodic networks (TPNs), like the well-known gyroid and diamond network phases, abound in soft matter assemblies, from block copolymers (BCPs), lyotropic liquid crystals and surfactants to functional architectures in biology. While TPNs are, in reality, volume-filling patterns of spatially-varying molecular composition, physical and structural models most often reduce their structure to lower-dimensional geometric objects: the 2D interfaces between chemical domains; and the 1D skeletons that thread through inter-connected, tubular domains. These lower-dimensional structures provide a useful basis of comparison to idealized geometries based on triply-periodic minimal, or constant-mean curvature surfaces, and shed important light on the spatially heterogeneous packing of molecular constituents that form the networks.

View Article and Find Full Text PDF

Aluminium typically deforms via full dislocations due to its high stacking fault energy. Twinning in aluminium, although difficult, may occur at low temperature and high strain rate. However, the 9R phase rarely occurs in aluminium simply because of its giant stacking fault energy.

View Article and Find Full Text PDF

Structural colors (SCs) of photonic crystals (PCs) arise from selective constructive interference of incident light. Here, an ink-jet printable and rewritable block copolymer (BCP) SC display is demonstrated, which can be quickly written and erased over 50 times with resolution nearly equivalent to that obtained with a commercial office ink-jet printer. Moreover, the writing process employs an easily modified printer for position- and concentration-controlled deposition of a single, colorless, water-based ink containing a reversible crosslinking agent, ammonium persulfate.

View Article and Find Full Text PDF

Diffraction with asymmetric enhancement and suppression, and alternating contrast for symmetric diffraction orders is demonstrated from planar two-component optical gratings made of passive/lossy materials. Simulations agree well with the experimental diffraction pattern of the fabricated sample. Our fabrication approach uses simple, standard planar micro/nano lithography employing one photoresist and one dye.

View Article and Find Full Text PDF