Publications by authors named "Edwin L Fiscus"

Water availability for turfgrass systems is often limited and is likely to become more so in the future. Here, we conducted experiments that examined the ability of tall fescue (Festuca arundinacea Schreb.) to control transpiration with increasing vapour pressure deficit (VPD) and determined whether control was influenced by temperature.

View Article and Find Full Text PDF

Environmental conditions influence plant responses to ozone (O(3)), but few studies have evaluated individual factors directly. In this study, the effect of O(3) at high and low atmospheric vapour pressure deficit (VPD) was evaluated in two genotypes of snap bean (Phaseolus vulgaris L.) (R123 and S156) used as O(3) bioindicator plants.

View Article and Find Full Text PDF

Climate change factors such as elevated atmospheric carbon dioxide (CO₂) and ozone (O₃) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO₂- or O₃-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands.

View Article and Find Full Text PDF

While exposure of C3 plants to elevated [CO2] would be expected to reduce production of reactive oxygen species (ROS) in leaves because of reduced photorespiratory metabolism, results obtained in the present study suggest that exposure of plants to elevated [CO2] can result in increased oxidative stress. First, in Arabidopsis and soybean, leaf protein carbonylation, a marker of oxidative stress, was often increased when plants were exposed to elevated [CO2]. In soybean, increased carbonyl content was often associated with loss of leaf chlorophyll and reduced enhancement of leaf photosynthetic rate (Pn) by elevated [CO2].

View Article and Find Full Text PDF

The model of Farquhar, von Caemmerer and Berry is the standard in relating photosynthetic carbon assimilation and concentration of intercellular CO(2). The techniques used in collecting the data from which its parameters are estimated have been the object of extensive optimization, but the statistical aspects of estimation have not received the same attention. The model segments assimilation into three regions, each modeled by a distinct function.

View Article and Find Full Text PDF

The projected rise in atmospheric CO2 concentration is expected to increase growth and yield of many agricultural crops. The magnitude of this stimulus will partly depend on interactions with other components of the atmosphere such as tropospheric O3. Elevated CO2 concentrations often lessen the deleterious effects of O3, but the mechanisms responsible for this response have received little direct examination.

View Article and Find Full Text PDF

Tropospheric ozone is an air pollutant that is toxic to plants, causing visible injury to foliage and a reduction in growth and yield. The use of plant bioindicators is one approach to assess the ozone impacts in diverse geographical areas. The objective of this study was to evaluate snap bean (Phaseolus vulgaris L.

View Article and Find Full Text PDF