Publications by authors named "Edwin Jousma"

Plexiform neurofibroma, a benign peripheral nerve tumor, is associated with the biallelic loss of function of the NF1 tumor suppressor in Schwann cells. Here, we show that FLLL32, a small molecule inhibitor of JAK2/STAT3 signaling, reduces neurofibroma growth in mice with conditional, biallelic deletion of Nf1 in the Schwann cell lineage. FLLL32 treatment or Stat3 deletion in tumor cells reduced inflammatory cytokine expression and tumor macrophage numbers in neurofibroma.

View Article and Find Full Text PDF

Neurofibromas are benign peripheral nerve tumors driven by NF1 loss in Schwann cells (SCs). Macrophages are abundant in neurofibromas, and macrophage targeted interventions may have therapeutic potential in these tumors. We generated gene expression data from fluorescence-activated cell sorted (FACS) SCs and macrophages from wild-type and mutant nerve and neurofibroma to identify candidate pathways involved in SC-macrophage cross-talk.

View Article and Find Full Text PDF

To identify genes and signaling pathways that initiate Neurofibromatosis type 1 (NF1) neurofibromas, we used unbiased insertional mutagenesis screening, mouse models, and molecular analyses. We mapped an Nf1-Stat3-Arid1b/β-catenin pathway that becomes active in the context of Nf1 loss. Genetic deletion of Stat3 in Schwann cell progenitors (SCPs) and Schwann cells (SCs) prevents neurofibroma formation, decreasing SCP self-renewal and β-catenin activity.

View Article and Find Full Text PDF

Background: Neurofibromatosis type 1 (NF1) is a genetic disorder that predisposes affected individuals to formation of benign neurofibromas, peripheral nerve tumors that can be associated with significant morbidity. Loss of the NF1 Ras-GAP protein causes increased Ras-GTP, and we previously found that inhibiting MEK signaling downstream of Ras can shrink established neurofibromas in a genetically engineered murine model.

Procedures: We studied effects of MEK inhibition using 1.

View Article and Find Full Text PDF

Neurofibromatosis type 1 (NF1) patients develop benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). These incurable peripheral nerve tumors result from loss of NF1 tumor suppressor gene function, causing hyperactive Ras signaling. Activated Ras controls numerous downstream effectors, but specific pathways mediating the effects of hyperactive Ras in NF1 tumors are unknown.

View Article and Find Full Text PDF

Neurofibromatosis type 1 (NF1) is a common genetic disease that predisposes 30-50 % of affected individuals to develop plexiform neurofibromas. We found that macrophage infiltration of both mouse and human neurofibromas correlates with disease progression. Macrophages accounted for almost half of neurofibroma cells, leading us to hypothesize that nerve macrophages are inflammatory effectors in neurofibroma development and/or growth.

View Article and Find Full Text PDF

Background: Neurofibromatosis type 1 (NF1) is an inherited disease predisposing affected patients to variable numbers of benign neurofibromas. To date there are no effective chemotherapeutic drugs available for this slow growing tumor. Molecularly targeted agents that aim to slow neurofibroma growth are being tested in clinical trials.

View Article and Find Full Text PDF

To date, treatment of organophosphate (OP) poisoning shows several shortcomings, and OP-victims might suffer from lasting cognitive deficits and sleep-wake disturbances. In the present study, long-term effects of soman poisoning on learning ability, memory and neurogenesis were investigated in rats, treated with the anticholinergic atropine and the oxime HI-6 for reactivation of soman-inhibited acetylcholinesterase. We also investigated whether sub-chronic treatment with the reported neurogenesis enhancer olanzapine would stimulate neurogenesis and possibly normalize the anticipated long-term deleterious effects of soman intoxication.

View Article and Find Full Text PDF