https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=Edwin+F+van+der+Eide%5Bauthor%5D&datetype=edat&usehistory=y&retmax=1&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_679579ff9d5fe911bb040bea&query_key=1&retmode=xml&retstart=-10&retmax=25&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09
The 17-electron radical CpCr(CO)(2)(IMe)(•) (IMe = 1,3-dimethylimidazol-2-ylidene) was synthesized by the reaction of IMe with [CpCr(CO)(3)](2), and characterized by single crystal X-ray diffraction and by electron paramagnetic resonance (EPR), IR, and variable temperature (1)H NMR spectroscopy. The metal-centered radical is monomeric under all conditions and exhibits Curie paramagnetic behavior in solution. An electrochemically reversible reduction to 18-electron CpCr(CO)(2)(IMe)(-) takes place at E(1/2) = -1.
View Article and Find Full Text PDFA series consisting of a tungsten anion, radical, and cation, supported by the N-heterocyclic carbene 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes) and spanning formal oxidation states W(0), W(I), and W(II), has been synthesized, isolated, and characterized. Reaction of the hydride CpW(CO)(2)(IMes)H with KH and 18-crown-6 gives the tungsten anion [CpW(CO)(2)(IMes)](-)[K(18-crown-6)](+). Electrochemical oxidation of [CpW(CO)(2)(IMes)](-) in MeCN (0.
View Article and Find Full Text PDFRuthenium-catalysed ring-closing metathesis (RCM) is a powerful technique for the preparation of medium-to-large rings in organic synthesis, but the details of the intimate mechanism are obscure. The dynamic behaviour of an RCM-relevant ruthenacyclobutane complex and its reactivity with ethene were studied using low-temperature NMR spectroscopy to illuminate the mechanism of this widely used reaction. These kinetic and thermodynamic experiments allowed for mapping the energy surface of the key steps in the RCM reaction as mediated by Grubbs-type catalysts for alkene metathesis.
View Article and Find Full Text PDFInitiation processes in a family of ruthenium phosphonium alkylidene catalysts, some of which are commercially available, are presented. Seven 16-electron zwitterionic catalyst precursors of general formula (H(2)IMes)(Cl)(3)Ru=C(H)P(R(1))(2)R(2) (R(1) = R(2) = C(6)H(11), C(5)H(9), i-C(3)H(7), 1-Cy(3)-Cl, 1-Cyp(3)-Cl, 1-(i)Pr(3)-Cl; R(1) = C(6)H(11), R(2) = CH(2)CH(3), 1-EtCy(2)-Cl; R(1) = C(6)H(11), R(2) = CH(3), 1-MeCy(2)-Cl; R(1) = i-C(3)H(7), R(2) = CH(2)CH(3), 1-Et(i)Pr(2)-Cl; R(1) = i-C(3)H(7), R(2) = CH(3), 1-Me(i)Pr(2)-Cl) were prepared. These compounds can be converted to the metathesis active 14-electron phosphonium alkylidenes by chloride abstraction with B(C(6)F(5))(3).
View Article and Find Full Text PDFThe reaction of phosphonium alkylidenes [(H2IMes)RuCl2=CHPR3]+[A]- (R = C6H11, A = OTf or B(C6F5)4, 1-Cy; R = i-C3H7, A = ClB(C6F5)3 or OTf, 1-iPr) with 1 equiv of ethylene at -78 degrees C, in the presence of 2-3 equiv of a trapping olefin substrate, yields intermediates relevant to olefin metathesis catalytic cycles. Dimethyl cyclopent-3-ene-1,1-dicarboxylate gives solutions of a substituted ruthenacyclobutane 3 of relevance to ring closing metathesis catalysis. 1H and 13C NMR data are fully consistent with its assignment as a ruthenacyclobutane, but 1JCC values of 23 Hz for the CalphaH2-Cbeta bond and 8.
View Article and Find Full Text PDFCationic tungsten(V) methylidynes [L4W(X)[triple bond]CH]+[B(C6F5)4]- [L = PMe3, 0.5dmpe (dmpe = Me2PCH2CH2PMe2), X = Cl, OSO2CF3] have been prepared in high yield by a one-electron oxidation of the neutral tungsten(IV) methylidynes L4W(X)[triple bond]CH with [Ph3C]+[B(C6F5)4]-. The ease and reversibility of the one-electron oxidation of L4W(X)[triple bond]CH were demonstrated by cyclic voltammetry in tetrahydrofuran (E1/2 is approximately -0.
View Article and Find Full Text PDF