Background: Lanthanide-based nanomaterials offer a promising alternative for cancer therapy because of their selectivity and effectiveness, which can be modified and predicted by leveraging the improved accuracy and enhanced decision-making of machine learning (ML) modeling.
Methods: In this study, erbium (Er) and ytterbium (Yb) were used to dope zinc oxide (ZnO) nanoparticles (NPs). Various characterization techniques and biological assays were employed to investigate the physicochemical and optical properties of the (Er, Yb)-doped ZnO NPs, revealing the influence of the lanthanide elements.
The consumption of vegetables is essential for reducing the risk of noncommunicable diseases, yet global intake falls short of recommended levels. Enhancing the nutraceutical content of vegetables through postharvest abiotic stress, such as ultraviolet B (UVB) radiation, offers a promising solution to increase health benefits. This study developed a user-friendly, at-home UVB device designed to increase the phytochemical content in common vegetables like carrots, lettuce, and broccoli.
View Article and Find Full Text PDFAnimal venoms are natural products that have served as a source of novel molecules that have inspired novel drugs for several diseases, including for metabolic diseases such as type-2 diabetes and obesity. From venoms, toxins such as exendin-4 () and crotamine () have demonstrated their potential as treatments for obesity. Moreover, other toxins such as Phospholipases A and Disintegrins have shown their potential to modulate insulin secretion in vitro.
View Article and Find Full Text PDFFood Chem
January 2025
This study investigated the potential health benefits of spearmint, orange peel, and baby sage oleoresins extracted using supercritical CO and subsequently emulsified. The oleoresins were incorporated into dark chocolate, and their impact on physicochemical properties was evaluated. Characterization revealed rich sources of phenolic compounds, carotenoids, and volatile compounds in these oleoresins.
View Article and Find Full Text PDFMetabolic syndrome is a condition characterized by metabolic alterations that culminate in chronic noncommunicable diseases of high morbidity and mortality, such as cardiovascular diseases, type 2 diabetes, nonalcoholic fatty liver disease, and colon cancer. Developing new therapeutic strategies with a multifactorial approach is important since current therapies focus on only one or two components of the metabolic syndrome. In this sense, plant-based gene regulation represents an innovative strategy to prevent or modulate human metabolic pathologies, including metabolic syndrome.
View Article and Find Full Text PDFACS Omega
May 2024
Globally, the rise in neurodegenerative issues in tandem with shifts in lifestyle and aging population has prompted a search for effective interventions. Nutraceutical compounds have emerged as promising agents for addressing these challenges. This 60-day study on an aluminum-induced cognitive impairment rat model assessed three compounds and their combinations: probiotics (Prob, [5 × 10 CFU/day], and [5 × 10 CFU/day]), docosahexaenoic acid (DHA, 23.
View Article and Find Full Text PDFOne of the main concerns related to SARS-CoV-2 infection is the symptoms that could be developed by survivors, known as long COVID, a syndrome characterized by persistent symptoms beyond the acute phase of the infection. This syndrome has emerged as a complex and debilitating condition with a diverse range of manifestations affecting multiple organ systems. It is increasingly recognized for affecting the Central Nervous System, in which one of the most prevalent manifestations is cognitive impairment.
View Article and Find Full Text PDFUsing wounding stress to increase the bioactive phenolic content in fruits and vegetables offers a promising strategy to enhance their health benefits. When wounded, such phenolics accumulate in plants and can provide antioxidant, anti-inflammatory, and anti-obesogenic properties. This study investigates the potential of using wounding stress-treated carrots biofortified with phenolic compounds as a raw material to extract carrot juice with increased nutraceutical properties.
View Article and Find Full Text PDFNowadays, nutraceuticals are being incorporated into functional foods or used as supplements with nonpharmacological approaches in the prevention and management of several illnesses, including age-related conditions and chronic neurodegenerative diseases. Nutraceuticals are apt for preventing and treating such disorders because of their nontoxic, non-habit-forming, and efficient bioactivities for promoting neurological well-being due to their ability to influence cellular processes such as neurogenesis, synaptogenesis, synaptic transmission, neuro-inflammation, oxidative stress, cell death modulation, and neuronal survival. The capacity of nutraceuticals to modify all of these processes reveals the potential to develop food-based strategies to aid brain development and enhance brain function, prevent and ameliorate neurodegeneration, and possibly reverse the cognitive impairment observed in Alzheimer's disease, the most predominant form of dementia in the elderly.
View Article and Find Full Text PDFUltrasound-assisted extraction (UAE) is an efficient and sustainable method for extracting bioactive compounds from agro-industrial by-products. Moreover, it has been reported that ultraviolet A (UVA) radiation can induce the biosynthesis and accumulation of bioactive phenolic compounds. This study optimized the efficiency of ultrasound-assisted extraction (UAE) for recovering ultraviolet A (UVA)-induced phenolic compounds in strawberry by-products (RF-N).
View Article and Find Full Text PDFThe SARS-CoV-2 virus was first identified at the end of December 2019, causing the disease known as COVID-19, which, due to the high degree of contagion, was declared a global pandemic as of 2020. The end of the isolation was in 2022, thanks to the global multidisciplinary work of the massive vaccination campaigns. Even with the current knowledge about this virus and the COVID-19 disease, there are many questions and challenges regarding diagnosis and therapy in the fight against this virus.
View Article and Find Full Text PDFBackground: Cognition and brain function is critical through childhood and should be improved with balanced diets. Incorporating bioactive ingredients such as omega-3 polyunsaturated fatty acids (ω3 PUFAs) and probiotics into food formulations could be used as an approach to improve cognitive function. This study evaluated the effects on cognitive capacity of complementing rodent diets with chocolate, by itself and in combination with ω3 PUFAs from fish oil and probiotics.
View Article and Find Full Text PDFCurrent efforts to find novel treatments that counteract multiple sclerosis (MS) have pointed toward immunomodulation and remyelination. Currently, cell therapy has shown promising potential to achieve this purpose. However, disadvantages such as poor survival, differentiation, and integration into the target tissue have limited its application.
View Article and Find Full Text PDFOligodendrocyte precursor cell (OPC) migration is a mechanism involved in remyelination; these cells migrate from niches in the adult CNS. However, age and disease reduce the pool of OPCs; as a result, the remyelination capacity of the CNS decreases over time. Several experimental studies have introduced OPCs to the brain via direct injection or intrathecal administration.
View Article and Find Full Text PDFThe presenilin genes (PSEN1 and PSEN2) are mainly responsible for causing early-onset familial Alzheimer's disease, harboring ~300 causative mutations, and representing ~90% of all mutations associated with a very aggressive disease form. Presenilin 1 is the catalytic core of the γ-secretase complex that conducts the intramembranous proteolytic excision of multiple transmembrane proteins like the amyloid precursor protein, Notch-1, N- and E-cadherin, LRP, Syndecan, Delta, Jagged, CD44, ErbB4, and Nectin1a. Presenilin 1 plays an essential role in neural progenitor maintenance, neurogenesis, neurite outgrowth, synaptic function, neuronal function, myelination, and plasticity.
View Article and Find Full Text PDFIn late December 2019, multiple atypical pneumonia cases resulted in severe acute respiratory syndrome caused by a pathogen identified as a novel coronavirus SARS-CoV-2. The most common coronavirus disease 2019 (COVID-19) symptoms are pneumonia, fever, dry cough, and fatigue. However, some neurological complications following SARS-CoV-2 infection include confusion, cerebrovascular diseases, ataxia, hypogeusia, hyposmia, neuralgia, and seizures.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a chronic brain disorder characterized by progressive intellectual decline and memory and neuronal loss, caused mainly by extracellular deposition of amyloid-β (Aβ) and intracellular accumulation of hyperphosphorylated tau protein, primarily in areas implicated in memory and learning as prefrontal cortex and hippocampus. There are two forms of AD, a late-onset form that affects people over 65 years old, and the early-onset form, which is hereditable and affect people at early ages ~45 years. To date, there is no cure for the disease; consequently, it is essential to develop new tools for the study of processes implicated in the disease.
View Article and Find Full Text PDFDendrites and dendritic spines are dynamic structures with pivotal roles in brain connectivity and have been recognized as the locus of long-term synaptic plasticity related to cognitive processes such as learning and memory. In neurodegenerative diseases, the spine dynamic morphology alteration, such as shape and spine density, affects functional characteristics leading to synaptic dysfunction and cognitive impairment. Recent evidence implicates dendritic spine dysfunction as a critical feature in the pathogenesis of dementia, particularly Alzheimer's disease.
View Article and Find Full Text PDFStudies have shown that mesenchymal stem cell-derived exosomes can enhance neural plasticity and improve cognitive impairment. The purpose of this study was to investigate the effects of mesenchymal stem cell-derived exosomes on neurogenesis and cognitive capacity in a mouse model of Alzheimer's disease. Alzheimer's disease mouse models were established by injection of beta amyloid 1-42 aggregates into dentate gyrus bilaterally.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common type of dementia affecting regions of the central nervous system that exhibit synaptic plasticity and are involved in higher brain functions such as learning and memory. AD is characterized by progressive cognitive dysfunction, memory loss and behavioral disturbances of synaptic plasticity and energy metabolism. Cell therapy has emerged as an alternative treatment of AD.
View Article and Find Full Text PDF