Publications by authors named "Edwin Chen"

Article Synopsis
  • - The case centers on a 67-year-old woman with both papillary and follicular thyroid carcinomas, initially diagnosed with thyrotoxicosis from Graves' disease, presenting with severe metastasis and invasive tumor growth.
  • - Investigation revealed multiple metastases, including intra-cardiac tumor thrombus and bone fractures, leading to a diagnosis of synchronous thyroid cancer types, yet the patient chose palliative care over aggressive treatment options.
  • - The case highlights the challenges in accurately diagnosing synchronous thyroid malignancies and the limitations of the ACR TI-RADS system in detecting certain ultrasonographic features that indicate cancer, especially in patients with Graves' disease.
View Article and Find Full Text PDF

The erythrocyte silent Duffy blood group phenotype in Africans is thought to confer resistance to Plasmodium vivax blood-stage infection. However, recent studies report P. vivax infections across Africa in Fy-negative individuals.

View Article and Find Full Text PDF

Persistent infection by has been linked to the bacterial stringent response (SR), a conserved stress response pathway regulated by the Rel protein. Rel synthesizes (p)ppGpp "alarmones" in response to amino acid starvation, which enables adaptation to stress by modulating bacterial growth and virulence. We previously identified five novel protein-altering mutations in that arose in patients with persistent methicillin-resistant bacteremia.

View Article and Find Full Text PDF

In this issue of Structure, Maso et al. (2022) discover nanobodies that inhibit the SOS response of Escherichia coli by targeting the LexA repressor-protease. High-resolution structures of the novel LexA-nanobody complexes reveal they function by stabilizing LexA in its inactive conformation and preventing co-proteolysis by RecA.

View Article and Find Full Text PDF

Severe infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are often complicated by persistent bacteremia (PB) despite active antibiotic therapy. Antibiotic resistance rarely contributes to MRSA-PB, suggesting an important role for antibiotic tolerance pathways. To identify bacterial factors associated with PB, we sequenced the whole genomes of 206 MRSA isolates derived from 20 patients with PB and looked for genetic signatures of adaptive within-host evolution.

View Article and Find Full Text PDF

The bacterial DNA damage response pathway (SOS response) is composed of a network of genes regulated by a single transcriptional repressor, LexA. The lexA promoter, itself, contains two LexA operators, enabling negative feedback. In Escherichia coli, the downstream operator contains a conserved DNA cytosine methyltransferase (Dcm) site that is predicted to be methylated to 5-methylcytosine (5mC) specifically during stationary phase growth, suggesting a regulatory role for DNA methylation in the SOS response.

View Article and Find Full Text PDF

Purpose: To characterize an unusual presentation of infectious posterior uveitis using multimodal imaging, and discuss the clinical decision-making involved in diagnosis and treatment.

Methods: Wide-field fundus photography, swept-source optical coherence tomography (OCT), swept-source OCT angiography, fluorescein angiography, and indocyanine green angiography.

Results: This patient presented with cyclical fevers and blurry vision.

View Article and Find Full Text PDF

Calreticulin (CALR) is mutated in the majority of JAK2/MPL-unmutated myeloproliferative neoplasms (MPNs). Mutant CALR (CALRdel52) exerts its effect by binding to the thrombopoietin receptor MPL to cause constitutive activation of JAK-STAT signaling. In this study, we performed an extensive mutagenesis screen of the CALR globular N-domain and revealed 2 motifs critical for CALRdel52 oncogenic activity: (1) the glycan-binding lectin motif and (2) the zinc-binding domain.

View Article and Find Full Text PDF

The cohesin complex plays an essential role in chromosome maintenance and transcriptional regulation. Recurrent somatic mutations in the cohesin complex are frequent genetic drivers in cancer, including myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Here, using genetic dependency screens of stromal antigen 2-mutant (STAG2-mutant) AML, we identified DNA damage repair and replication as genetic dependencies in cohesin-mutant cells.

View Article and Find Full Text PDF

During their final maturation in the cytoplasm, pre-60S ribosomal particles are converted to translation-competent large ribosomal subunits. Here, we present the mechanism of peptidyltransferase centre (PTC) completion that explains how integration of the last ribosomal proteins is coupled to release of the nuclear export adaptor Nmd3. Single-particle cryo-EM reveals that eL40 recruitment stabilises helix 89 to form the uL16 binding site.

View Article and Find Full Text PDF

invasion of reticulocytes relies on distinct receptor-ligand interactions between the parasite and host erythrocytes. Engagement of the highly polymorphic domain II of the Duffy-binding protein (DBPII) with the erythrocyte's Duffy Ag receptor for chemokines (DARC) is essential. Some -exposed individuals acquired Abs to DBPII that block DBPII-DARC interaction and inhibit reticulocyte invasion, and Ab levels correlate with protection against malaria.

View Article and Find Full Text PDF

Mutations in calreticulin () are phenotypic drivers in the pathogenesis of myeloproliferative neoplasms. Mechanistic studies have demonstrated that mutant CALR binds to the thrombopoietin receptor MPL, and that the positive electrostatic charge of the mutant CALR C terminus is required for mutant CALR-mediated activation of JAK-STAT signaling. Here we demonstrate that although binding between mutant CALR and MPL is required for mutant CALR to transform hematopoietic cells; binding alone is insufficient for cytokine independent growth.

View Article and Find Full Text PDF

Plasmodium vivax Duffy Binding Protein (PvDBP) is a promising vaccine candidate for P. vivax malaria. Recently, we reported the epitopes on PvDBP region II (PvDBP-II) for three inhibitory monoclonal antibodies (2D10, 2H2, and 2C6).

View Article and Find Full Text PDF

Plasmodium vivax Duffy Binding Protein (PvDBP) is the most promising vaccine candidate for P. vivax malaria. The polymorphic nature of PvDBP induces strain-specific immune responses, however, and the epitopes of broadly neutralizing antibodies are unknown.

View Article and Find Full Text PDF

Unlabelled: Somatic mutations in calreticulin (CALR) are present in approximately 40% of patients with myeloproliferative neoplasms (MPN), but the mechanism by which mutant CALR is oncogenic remains unclear. Here, we demonstrate that expression of mutant CALR alone is sufficient to engender MPN in mice and recapitulates the disease phenotype of patients with CALR-mutant MPN. We further show that the thrombopoietin receptor MPL is required for mutant CALR-driven transformation through JAK-STAT pathway activation, thus rendering mutant CALR-transformed hematopoietic cells sensitive to JAK2 inhibition.

View Article and Find Full Text PDF

Impaired erythropoiesis in the deletion 5q (del(5q)) subtype of myelodysplastic syndrome (MDS) has been linked to heterozygous deletion of RPS14, which encodes the ribosomal protein small subunit 14. We generated mice with conditional inactivation of Rps14 and demonstrated an erythroid differentiation defect that is dependent on the tumor suppressor protein p53 (encoded by Trp53 in mice) and is characterized by apoptosis at the transition from polychromatic to orthochromatic erythroblasts. This defect resulted in age-dependent progressive anemia, megakaryocyte dysplasia and loss of hematopoietic stem cell (HSC) quiescence.

View Article and Find Full Text PDF

JAK2V617F is the most common oncogenic lesion in patients with myeloproliferative neoplasms (MPNs). Despite the ability of JAK2V617F to instigate DNA damage in vitro, MPNs are nevertheless characterized by genomic stability. In this study, we address this paradox by identifying the DNA helicase RECQL5 as a suppressor of genomic instability in MPNs.

View Article and Find Full Text PDF

Clonal proliferation in myeloproliferative neoplasms (MPN) is driven by somatic mutations in JAK2, CALR or MPL, but the contribution of inherited factors is poorly characterized. Using a three-stage genome-wide association study of 3,437 MPN cases and 10,083 controls, we identify two SNPs with genome-wide significance in JAK2(V617F)-negative MPN: rs12339666 (JAK2; meta-analysis P=1.27 × 10(-10)) and rs2201862 (MECOM; meta-analysis P=1.

View Article and Find Full Text PDF

The Plasmodium vivax vaccine candidate Duffy Binding Protein (DBP) is a protein necessary for P. vivax invasion of reticulocytes. The polymorphic nature of DBP induces strain-specific immune responses that pose unique challenges for vaccine development.

View Article and Find Full Text PDF

A decade on from the discovery of the JAK2V617F mutation in the majority of patients with myeloproliferative neoplasms (MPNs), JAK2V617F is now firmly installed in the hematology curriculum of medical students and the diagnostic-testing algorithm of clinicians. Furthermore, the oral JAK1/JAK2 inhibitor ruxolitinib, rationally designed to target activated JAK2 signaling in MPN, has been approved by the Food and Drug Administration (FDA) of the United States for the past 3 years for the treatment of intermediate- and advanced-phase myelofibrosis. Notwithstanding this, JAK2V617F continues to stimulate the MPN research community and novel insights into understanding the mechanisms by which JAK2V617F contributes to the pathogenesis of MPN are continually emerging.

View Article and Find Full Text PDF

Cancers result from the accumulation of genetic lesions, but the cellular consequences of driver mutations remain unclear, especially during the earliest stages of malignancy. The V617F mutation in the JAK2 non-receptor tyrosine kinase (JAK2V617F) is present as an early somatic event in most patients with myeloproliferative neoplasms (MPNs), and the study of these chronic myeloid malignancies provides an experimentally tractable approach to understanding early tumorigenesis. Introduction of exogenous JAK2V617F impairs replication fork progression and is associated with activation of the intra-S checkpoint, with both effects mediated by phosphatidylinositide 3-kinase (PI3K) signaling.

View Article and Find Full Text PDF

Signaling mutations (eg, JAK2V617F) and mutations in genes involved in epigenetic regulation (eg, TET2) are the most common cooccurring classes of mutations in myeloproliferative neoplasms (MPNs). Clinical correlative studies have demonstrated that TET2 mutations are enriched in more advanced phases of MPNs such as myelofibrosis and leukemic transformation, suggesting that they may cooperate with JAK2V617F to promote disease progression. To dissect the effects of concomitant Jak2V617F expression and Tet2 loss within distinct hematopoietic compartments in vivo, we generated Jak2V617F/Tet2 compound mutant genetic mice.

View Article and Find Full Text PDF

The Notch1 signaling pathway is essential for hematopoietic development. However, the effects of postnatal activation of Notch1 signaling on hematopoietic system is not yet fully understood. We previously generated ZEG‑IC‑Notch1 transgenic mice that have a floxed β‑geo/stop signal between a CMV promoter and intracellular domain of Notch1 (IC‑Notch1).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session61e1hj0t5o4oes83fshfgqj2jk9taq3f): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once