Publications by authors named "Edwin C Pang"

In recent years scientists worldwide have realized that the effective life span of any antimicrobial agent is limited, due to increasing development of resistance by microorganisms. Consequently, numerous studies have been conducted to find new alternative sources of antimicrobial agents, especially from plants. The aims of this project were to examine the antimicrobial properties of essential oils distilled from Australian-grown Ocimum tenuiflorum (Tulsi), to quantify the volatile components present in flower spikes, leaves and the essential oil, and to investigate the compounds responsible for any activity.

View Article and Find Full Text PDF

Echinacea, native to the Canadian prairies and the prairie states of the United States, has a long tradition as a folk medicine for the Native Americans. Currently, Echinacea are among the top 10 selling herbal medicines in the U.S.

View Article and Find Full Text PDF

Background: Asterids is one of the major plant clades comprising of many commercially important medicinal species. One of the major concerns in medicinal plant industry is adulteration/contamination resulting from misidentification of herbal plants. This study reports the construction and validation of a microarray capable of fingerprinting medicinally important species from the Asterids clade.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how different plant densities affect the root yield and biomarker content of Salvia miltiorrhiza Bunge, a medicinal herb, through a field trial with six density variations.
  • Significant variations in yields and biomarker contents were found, with best root yields per plant at densities of 45×30 cm or 45×40 cm, and optimal biomarker production at 30×30 cm.
  • The findings indicate that adjusting plant density can enhance the quality and quantity of both root yields and important medicinal compounds, providing insights for improved cultivation practices.
View Article and Find Full Text PDF

Background: Food adulteration remains a major global concern. DNA fingerprinting has several advantages over chemical and morphological identification techniques. DNA microarray-based fingerprinting techniques have not been used previously to detect adulteration involving dried commercial samples of closely related species.

View Article and Find Full Text PDF

Salvia miltiorrhiza f. alba (Baihua Danshen) is a Chinese medicinal herb commonly used for treating cardiovascular disease. It has been grown in Australia, although the quality of its main medicinal part (dried root) has not been assessed.

View Article and Find Full Text PDF

Seasonal variations in contents of bioactive markers in Australian-grown Salvia miltiorrhiza roots were investigated in a two-year field trial. Cryptotanshinone, tanshinone I, tanshinone IIA, and salvianolic acid B were quantitatively determined by reversed-phase (RP) HPLC. Similar accumulation patterns were observed for the three tanshinones throughout the trial period, although roots harvested in the first year was found to contain relatively higher contents of these compounds.

View Article and Find Full Text PDF
Article Synopsis
  • The accurate identification of medicinal plants is crucial for ensuring their purity, quality, and safety amid growing concerns.
  • The study investigates the Subtracted Diversity Array (SDA) for its genotyping capabilities, showing it can effectively differentiate plant species it was not initially designed for and classify known species at family and species levels.
  • The research highlights the potential of transposon-like sequences as useful markers for distinguishing between angiosperm families and species, while suggesting future improvements for even more precise genotyping.
View Article and Find Full Text PDF

Danshen (Salvia miltiorrhiza Bunge, Lamiaceae) is a commonly used and highly valued Chinese medicinal herb grown widely in China. In the present work, we studied cultivar variations of Australian-grown Danshen in order to select optimal cultivars for local herbal production. Root yields of seven cultivars, V1-V7, were monitored in a one-year field trial, and bioactive markers, including cryptotanshinone, tanshinone I, tanshinone IIA, and salvianolic acid B, were quantitatively determined using a validated RP-HPLC method.

View Article and Find Full Text PDF

Background: Cultivated chickpea (Cicer arietinum) has a narrow genetic base making it difficult for breeders to produce new elite cultivars with durable resistance to major biotic and abiotic stresses. As an alternative to genome mapping, microarrays have recently been applied in crop species to identify and assess the function of putative genes thought to be involved in plant abiotic stress and defence responses. In the present study, a cDNA microarray approach was taken in order to determine if the transcription of genes, from a set of previously identified putative stress-responsive genes from chickpea and its close relative Lathyrus sativus, were altered in chickpea by the three abiotic stresses; drought, cold and high-salinity.

View Article and Find Full Text PDF

Using microarray technology and a set of chickpea (Cicer arietinum L.) unigenes, grasspea (Lathyrus sativus L.) expressed sequence tags (ESTs) and lentil (Lens culinaris Med.

View Article and Find Full Text PDF

Until recently, the identification of plants relied on conventional techniques, such as morphological, anatomical and chemical profiling, that are often inefficient or unfeasible in certain situations. Extensive literature exists describing the use of polymerase chain reaction (PCR) DNA-based identification techniques, which offer a reliable platform, but their broad application is often limited by a low throughput. However, hybridization-based microarray technology represents a rapid and high-throughput tool for genotype identification at a molecular level.

View Article and Find Full Text PDF