Changes in inhibition following traumatic brain injury (TBI) appear to be one of the major factors that contribute to excitation:inhibition imbalance. Neuron pathology, interneurons in particular evolves from minutes to weeks post injury and follows a complex time course. Previously, we showed that in the long-term in diffuse TBI (dTBI), there was select reduction of specific dendrite-targeting neurons in sensory cortex and hippocampus while in motor cortex there was up-regulation of specific dendrite-targeting neurons.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a major cause of morbidity and mortality world-wide and can result in persistent cognitive, sensory and behavioral dysfunction. Understanding the time course of TBI-induced pathology is essential to effective treatment outcomes. We induced TBI in rats using an impact acceleration method and tested for sensorimotor skill and sensory sensitivity behaviors for two weeks to find persistently poor outcomes post-injury.
View Article and Find Full Text PDFLong-term diffuse traumatic brain injury (dTBI) causes neuronal hyperexcitation in supragranular layers in sensory cortex, likely through reduced inhibition. Other forms of TBI affect inhibitory interneurons in subcortical areas but it is unknown if this occurs in cortex, or in any brain area in dTBI. We investigated dTBI effects on inhibitory neurons and astrocytes in somatosensory and motor cortex, and hippocampus, 8 weeks post-TBI.
View Article and Find Full Text PDFWe have previously demonstrated that traumatic brain injury (TBI) induces significant long-term neuronal hyperexcitability in supragranular layers of sensory cortex, coupled with persistent sensory deficits. Hence, we aimed to investigate whether brain plasticity induced by environmental enrichment (EE) could attenuate abnormal neuronal and sensory function post-TBI. TBI (n = 22) and sham control (n = 21) animals were randomly assigned housing in either single or enriched conditions for 7-9 weeks.
View Article and Find Full Text PDFElectrodes for cortical stimulation need to deliver current to neural tissue effectively and safely. We have developed electrodes with a novel annular geometry for use in cortical visual prostheses. Here, we explore a critical question on the ideal annulus height to ensure electrical stimulation will be safe and effective.
View Article and Find Full Text PDFProgesterone (P4) has been suggested as a neuroprotective agent for traumatic brain injury (TBI) because it ameliorates many post-TBI sequelae. We examined the effects of P4 treatment on the short-term (4 days post-TBI) and long-term (8 weeks post-TBI) aftermath on neuronal processing in the rodent sensory cortex of impact acceleration-induced diffuse TBI. We have previously reported that in sensory cortex, diffuse TBI induces a short-term hypoexcitation that is greatest in the supragranular layers and decreases with depth, but a long-term hyperexcitation that is exclusive to the supragranular layers.
View Article and Find Full Text PDFElectrodes for cortical stimulation need to deliver current to neural tissue effectively and safely. We have developed electrodes with a novel annular geometry for use in cortical visual prostheses. Here, we explore a critical question on the ideal annulus height to ensure electrical stimulation will be safe and effective.
View Article and Find Full Text PDFUnlabelled: During inflammation, the kynurenine pathway (KP) metabolises the essential amino acid tryptophan (TRP) potentially contributing to excitotoxicity via the release of quinolinic acid (QUIN) and 3-hydroxykynurenine (3HK). Despite the importance of excitotoxicity in the development of secondary brain damage, investigations on the KP in TBI are scarce. In this study, we comprehensively characterised changes in KP activation by measuring numerous metabolites in cerebrospinal fluid (CSF) from TBI patients and assessing the expression of key KP enzymes in brain tissue from TBI victims.
View Article and Find Full Text PDFThe consequences of mild traumatic brain injury (TBI) on neuronal functionality are only now being elucidated. We have now examined the changes in sensory encoding in the whisker-recipient barrel cortex and the brain tissue damage in the acute phase (24 h) after induction of TBI (n=9), with sham controls receiving surgery only (n=5). Injury was induced using the lateral fluid percussion injury method, which causes a mixture of focal and diffuse brain injury.
View Article and Find Full Text PDFBackground: Diffuse axonal injury is a common consequence of traumatic brain injury (TBI) and often co-occurs with hypoxia, resulting in poor neurological outcome for which there is no current therapy. Here, we investigate the ability of the multifunctional compound erythropoietin (EPO) to provide neuroprotection when administered to rats after diffuse TBI alone or with post-traumatic hypoxia.
Methods: Sprague-Dawley rats were subjected to diffuse traumatic axonal injury (TAI) followed by 30 minutes of hypoxic (Hx, 12% O2) or normoxic ventilation, and were administered recombinant human EPO-α (5000 IU/kg) or saline at 1 and 24 hours post-injury.
Secondary hypoxia is a known contributor to adverse outcomes in patients with traumatic brain injury (TBI). Based on the evidence that hypoxia and TBI in isolation induce neuroinflammation, we investigated whether TBI combined with hypoxia enhances cerebral cytokine production. We also explored whether increased concentrations of injury biomarkers discriminate between hypoxic (Hx) and normoxic (Nx) patients, correlate to worse outcome, and depend on blood-brain barrier (BBB) dysfunction.
View Article and Find Full Text PDFTraumatic brain injury (TBI) from a blow to the head is often associated with complex patterns of brain abnormalities that accompany deficits in cognitive and motor function. Previously we reported that a long-term consequence of TBI, induced with a closed-head injury method modelling human car and sporting accidents, is neuronal hyper-excitation in the rat sensory barrel cortex that receives tactile input from the face whiskers. Hyper-excitation occurred only in supra-granular layers and was stronger to complex than simple stimuli.
View Article and Find Full Text PDFTraumatic brain injury (TBI) can result in persistent sensorimotor and cognitive deficits including long-term altered sensory processing. The few animal models of sensory cortical processing effects of TBI have been limited to examination of effects immediately after TBI and only in some layers of cortex. We have now used the rat whisker tactile system and the cortex processing whisker-derived input to provide a highly detailed description of TBI-induced long-term changes in neuronal responses across the entire columnar network in primary sensory cortex.
View Article and Find Full Text PDFAllopregnanolone and related steroids are potent γ-aminobutyric acid receptor-A receptor agonistic allosteric modulators that suppress central nervous system (CNS) activity; in some species, these neurosteroids regulate normal CNS activity before birth. The aims of this study were to determine the effect of suppressing allopregnanolone production on behavioral responses to transient asphyxia in late gestation fetal sheep using the 5α-reductase (R)-2 inhibitor, finasteride. Specificity of the effects of finasteride was assessed by co-infusion of alfaxalone, a synthetic analog of allopregnanolone.
View Article and Find Full Text PDFTraumatic brain injury (TBI) resulting in poor neurological outcome is predominantly associated with diffuse brain damage and secondary hypoxic insults. Post-traumatic hypoxia is known to exacerbate primary brain injury; however, the underlying pathological mechanisms require further elucidation. Using a rat model of diffuse traumatic axonal injury (TAI) followed by a post-traumatic hypoxic insult, we characterized axonal pathology, macrophage/microglia accumulation, and astrocyte responses over 14 days.
View Article and Find Full Text PDFSevere global fetal asphyxia, if caused by a brief occlusion of the umbilical cord, results in prolonged cerebral hypoperfusion in fetal sheep. In this study, we sought evidence to support the hypothesis that cerebral hypoperfusion is a consequence of suppressed cerebral metabolism. In the 24 h following complete occlusion of the umbilical cord for 10 min, sagittal sinus blood flow velocity was significantly decreased for up to 12 h.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
August 2008
Maternal alcohol consumption during pregnancy can affect fetal development, but little is known about the effects on the developing kidney. Our objectives were to determine the effects of repeated ethanol exposure during the latter half of gestation on glomerular (nephron) number and expression of key genes involved in renal development or function in the ovine fetal kidney. Pregnant ewes received daily intravenous infusion of ethanol (0.
View Article and Find Full Text PDFOxygen free radicals, including the highly toxic hydroxyl radical (*OH), initiate lipid peroxidation and DNA/RNA fragmentation and damage cells. The pineal hormone melatonin is an antioxidant and powerful scavenger of *OH. We hypothesized that maternally administered melatonin could reduce *OH formation, lipid peroxidation, and DNA/RNA damage in the fetal brain in response to asphyxia.
View Article and Find Full Text PDFHydroxyl radical (.OH) is a reactive oxygen species produced during severe hypoxia, asphyxia, or ischemia that can cause cell death resulting in brain damage. Generation of .
View Article and Find Full Text PDFAllopregnanolone (AP) is a potent modulator of the GABAA receptor. Brain AP concentrations increase in response to stress, which is thought to provide neuroprotection by reducing excitation in the adult brain. Umbilical cord occlusion (UCO) causes hypoxia and asphyxia in the fetus, which are major risk factors associated with poor neurological outcome for the neonate, and may lead to adverse sequelae such as cerebral palsy.
View Article and Find Full Text PDF