Publications by authors named "Edwige Amigou"

The BCH (BNIP2 and Cdc42GAP Homology) domain-containing protein Bmcc1/Prune2 is highly enriched in the brain and is involved in the regulation of cytoskeleton dynamics and cell survival. However, the molecular mechanisms accounting for these functions are poorly defined. Here, we have identified Bmcc1s, a novel isoform of Bmcc1 predominantly expressed in the mouse brain.

View Article and Find Full Text PDF

Astrocytes are extensively coupled through gap junctions (GJs) that are composed of channels mostly constituted by connexin43 (Cx43). This astroglial gap junctional intercellular communication (GJIC) allows propagation of ions and signaling molecules critical for neuronal activity and survival. It is drastically inhibited by a short-term exposure to endothelin-1 (ET-1) or to sphingosine-1-phosphate (S1P), both compounds being inflammatory mediators acting through activation of GTP-binding protein-coupled receptors (GPCRs).

View Article and Find Full Text PDF

The mechanisms involved in Alzheimer's disease are not completely understood and how glial cells contribute to this neurodegenerative disease remains to be elucidated. Because inflammatory treatments and products released from activated microglia increase glial hemichannel activity, we investigated whether amyloid-β peptide (Aβ) could regulate these channels in glial cells and affect neuronal viability. Microglia, astrocytes, or neuronal cultures as well as acute hippocampal slices made from GFAP-eGFP transgenic mice were treated with the active fragment of Aβ.

View Article and Find Full Text PDF

Astrocytes express high levels of connexin43, a protein that forms two types of channels: gap junction channels for direct intercellular communication, and hemichannels for exchanges with the extracellular space. Inflammation induces connexin43 hemichannel activation, which has been proposed to be involved in neuroglial interactions. Here, we investigated the contribution of connexin43 to NMDA-induced excitotoxicity in neuron/astrocyte co-cultures, after treatment with a pro-inflammatory cytokine mixture, containing TNF-alpha and IL1-beta (Mix), that stimulated astroglial connexin43 hemichannel activity.

View Article and Find Full Text PDF

Brain injuries as well as neurodegenerative diseases, are associated with neuro-inflammation characterized by astroglial and microglial activation and/or proliferation. Recently, we reported that lipopolysaccharide (LPS)-activation of microglia inhibits junctional channels and promotes hemichannels, two connexin43 functions in astrocytes. This opposite regulation is mediated by two pro-inflammatory cytokines, interleukin-1 beta and tumor necrosis factor-alpha, released from activated microglia.

View Article and Find Full Text PDF

Brain inflammation is characterized by a reactive gliosis involving the activation of astrocytes and microglia. This process, common to many brain injuries and diseases, underlies important phenotypic changes in these two glial cell types. One characteristic feature of astrocytes is their high level of intercellular communication mediated by gap junctions.

View Article and Find Full Text PDF

Brain macrophages are known to exert dual and opposing functions on neuronal survival, which can be either beneficial or detrimental. The rationale of our study is that this duality could arise from an exclusive secretion of either pro- or anti-inflammatory cytokine by distinct cell subsets, cytokines that could respectively mediate neurotoxic or neurotrophic effects. Innate immune response was induced in macrophage cultures prepared from embryonic-day-16 to postnatal-day-8 mouse brains.

View Article and Find Full Text PDF

Albumin, a blood protein absent from the adult brain in physiological situations, can be brought into contact with brain cells during development or, in adult, following breakdown of the blood-brain barrier occurring as a result of local inflammation. In the present study, we show that ovalbumin and albumin induce the release of monocyte chemotactic protein 1 (MCP-1/CCL2) from rat embryonic mixed brain cells. A short-term exposure to ovalbumin during the cell dissociation procedure is sufficient to generate MCP-1 mRNA.

View Article and Find Full Text PDF