Publications by authors named "Edward van Opstal"

The Tri-Service Microbiome Consortium (TSMC) was founded to enhance collaboration, coordination, and communication of microbiome research among U.S. Department of Defense (DoD) organizations and to facilitate resource, material and information sharing among consortium members.

View Article and Find Full Text PDF

Phylosymbiosis is defined as microbial community relationships that recapitulate the phylogeny of hosts. As evidence for phylosymbiosis rapidly accumulates in different vertebrate and invertebrate holobionts, a central question is what evolutionary forces cause this pattern. We use intra- and interspecific gut microbiota transplants to test for evidence of selective pressures that contribute to phylosymbiosis.

View Article and Find Full Text PDF

Maternal transmission of intracellular microbes is pivotal in establishing long-term, intimate symbioses. For germline microbes that exert negative reproductive effects on their hosts, selection can theoretically favor the spread of host genes that counteract the microbe's harmful effects. Here, we leverage a major difference in bacterial (Wolbachia pipientis) titers between closely related wasp species with forward genetic, transcriptomic, and cytological approaches to map two quantitative trait loci that suppress bacterial titers via a maternal effect.

View Article and Find Full Text PDF

Phylosymbiosis was recently proposed to describe the eco-evolutionary pattern, whereby the ecological relatedness of host-associated microbial communities parallels the phylogeny of related host species. Here, we test the prevalence of phylosymbiosis and its functional significance under highly controlled conditions by characterizing the microbiota of 24 animal species from four different groups (Peromyscus deer mice, Drosophila flies, mosquitoes, and Nasonia wasps), and we reevaluate the phylosymbiotic relationships of seven species of wild hominids. We demonstrate three key findings.

View Article and Find Full Text PDF

The parasitoid wasp genus (Hymenoptera: Chalcidoidea) is a well-established model organism for insect development, evolutionary genetics, speciation, and symbiosis. The host-microbiota assemblage which constitutes the holobiont (a host together with all of its associated microbes) consists of viruses, two heritable bacterial symbionts and a bacterial community dominated in abundance by a few taxa in the gut. In the wild, all four species are systematically infected with the obligate intracellular bacterium and can additionally be co-infected with These two reproductive parasites have different transmission modes and host manipulations (cytoplasmic incompatibility vs.

View Article and Find Full Text PDF

Development of a Nasonia in vitrogerm-free rearing system in 2012 enabled investigation of Nasonia-microbiota interactions and real-time visualization of parasitoid metamorphosis. However, the use of antibiotics, bleach, and fetal bovine serum introduced artifacts relative to conventional rearing of Nasonia. Here, we optimize the germ-free rearing procedure by using filter sterilization in lieu of antibiotics and by removing residual bleach and fetal bovine serum.

View Article and Find Full Text PDF

Background: The elderly host is highly susceptible to severe disease and treatment failure in Clostridium difficile infection (CDI). We investigated how treatment with vancomycin in the aged host influences systemic and intestinal humoral responses and select intestinal microbiota.

Methods: Young (age, 2 months) and aged (age, 18 months) C57BL/6 mice were infected with VPI 10463 after exposure to broad-spectrum antibiotics.

View Article and Find Full Text PDF

Objectives: Clostridium difficile infection (CDI) is a primary cause of antibiotic-associated diarrhoeal illness. Current therapies are insufficient as relapse rates following antibiotic treatment range from 25% for initial treatment to 60% for treatment of recurrence. In this study, we looked at the efficacy of SQ641 in a murine model of CDI.

View Article and Find Full Text PDF

Background: Clostridium difficile is a major identifiable and treatable cause of antibiotic-associated diarrhea. Poor nutritional status contributes to mortality through weakened host defenses against various pathogens. The primary goal of this study was to assess the contribution of a reduced protein diet to the outcomes of C.

View Article and Find Full Text PDF

Background: Clostridium difficile toxins A and B (TcdA and TcdB), considered to be essential for C. difficile infection, affect the morphology of several cell types with different potencies and timing. However, morphological changes over various time scales are poorly characterized.

View Article and Find Full Text PDF

Antibiotic treatment, including vancomycin, for Clostridium difficile infection (CDI) has been associated with recurrence of disease in up to 25% of infected persons. This study investigated the effects of vancomycin on the clinical outcomes, intestinal histopathology, and anaerobic community during and after treatment in a murine model of CDI. C57BL/6 mice were challenged with C.

View Article and Find Full Text PDF

Clostridium difficile toxins A (TcdA) and B (TcdB) induce a pronounced systemic and intestinal inflammatory response. A(2B) adenosine receptors (A(2B)ARs) are the predominant adenosine receptors in the intestinal epithelium. We investigated whether A(2B)ARs are upregulated in human intestinal cells by TcdA or TcdB and whether blockade of A(2B)ARs can ameliorate C.

View Article and Find Full Text PDF

Clostridium difficile infection (CDI) is a serious diarrheal disease that often develops following prior antibiotic usage. One of the major problems with current therapies (oral vancomycin and metronidazole) is the high rate of recurrence. Nitazoxanide (NTZ), an inhibitor of pyruvate:ferredoxin oxidoreductase (PFOR) in anaerobic bacteria, parasites, Helicobacter pylori, and Campylobacter jejuni, also shows clinical efficacy against CDI.

View Article and Find Full Text PDF