Publications by authors named "Edward Zorȩbski"

Investments in the transfer and storage of thermal energy along with renewable energy sources strengthen health and economic infrastructure. These factors intensify energy diversification and the more rapid post-COVID recovery of economies. Ionanofluids (INFs) composed of long multiwalled carbon nanotubes (MWCNTs) rich in sp-hybridized atoms and ionic liquids (ILs) display excellent thermal conductivity enhancement with respect to the pure IL, high thermal stability, and attractive rheology.

View Article and Find Full Text PDF

Ionic liquids (ILs) are known for their unique physicochemical properties. However, despite the great number of published papers, still little attention has been paid to their biological activity. Anticancer potential and the molecular mechanisms underlying the toxicity of these compounds are especially interesting and still unexplored.

View Article and Find Full Text PDF

Plants are masterpieces of evolution that is based on carbon chemistry. In particular, plant leaves are biosynthetic factories able to convert CO into carbohydrates and oxygen. It is worth noting that mimicking the efficiency of a natural plant and natural leaf is still a challenge for contemporary chemistry.

View Article and Find Full Text PDF

Transfer of the excellent intrinsic properties of individual carbon nanoparticles into real-life applications of the corresponding heat transfer fluids remains challenging. This process requires identification and quantification of the nanoparticle-liquid interface. Here, for the first time, we have determined geometry and properties of this interface by applying transmission electron cryomicroscopy (cryo-TEM).

View Article and Find Full Text PDF

Ultrasound absorption spectra within the frequency range 10-300 MHz were determined for 1-propyl- and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imides at ambient pressure and at temperatures in the ranges 293.15-313.15 and 293.

View Article and Find Full Text PDF

At 20, 25, 30, and 40 °C, the ultrasonic absorption spectra of the protic ionic liquid 3-(butoxymethyl)-1H-imidazol-3-ium salicylate have been measured between 0.6 and 900 MHz. Below 250 MHz, the absorption coefficient decreases with temperature, potentially indicating a major effect of the viscosity and/or a relaxation time.

View Article and Find Full Text PDF

A complete review of the literature data on the speed of sound and ultrasound absorption in pure ionic liquids (ILs) is presented. Apart of the analysis of data published to date, the significance of the speed of sound in ILs is regarded. An analysis of experimental methods described in the literature to determine the speed of sound in ILs as a function of temperature and pressure is reported, and the relevance of ultrasound absorption in acoustic investigations is discussed.

View Article and Find Full Text PDF

Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides were determined as a function of the alkyl chain length on the cation from 1-propyl to 1-hexyl from 293.15 to 323.15 K at ambient pressure.

View Article and Find Full Text PDF

Ultrasonic relaxation spectra were determined for lower vicinal and terminal alkanediols at ambient pressure and a temperature of 298.15 K. The ultrasound absorption measurements were made by means of the standard pulse technique for 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 2,3-butanediol, and 1,5-pentanediol within the frequency range of 5-300 or 10-300 MHz.

View Article and Find Full Text PDF

During this research, we present a study on the thermal properties, such as the melting, cold crystallization, and glass transition temperatures as well as heat capacities from 293.15 K to 323.15 K of nine in-house synthesized protic ionic liquids based on the 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate ([H-Im-C1OC(n)][Sal]) with n = 3-11.

View Article and Find Full Text PDF

The so-called Beyer nonlinearity parameter B/A is calculated for 1,2- and 1,3-propanediol, 1,2-, 1,3-, and 1,4-butanediol, as well as 2-methyl-2,4-pentanediol by means of a thermodynamic method. The calculations are made for temperatures from (293.15 to 318.

View Article and Find Full Text PDF

Acoustic properties of three (1-ethyl-, 1-butyl-, and 1-octyl-) 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide room-temperature ionic liquids are reported and discussed. The speeds of sound in RTILs were measured as a function of temperature in the range 288-323 K by means of a sing around method. The densities and isobaric heat capacities were determined from 288.

View Article and Find Full Text PDF