This paper utilized a quantitative (1)H nuclear magnetic resonance (qHNMR) method for assessing the purity of iridoids and secoiridoids. The method was fully validated, including specificity, linearity, accuracy, precision, reproducibility, and robustness. For optimization of experimental conditions, several experimental parameters were investigated, including relaxation delay (D1), scan numbers (NS) and power length (PL1).
View Article and Find Full Text PDFIntroduction: Quantitative (1)H-NMR (qNMR) is a well-established method for quantitative analysis and purity tests. Applications have been reported in many areas, such as natural products, foods and beverages, metabolites, pharmaceuticals and agriculture. The characteristics of quantitative estimation without relying on special target reference substances make qNMR especially suitable for purity tests of chemical compounds and natural products.
View Article and Find Full Text PDFBackground: Based on computer-aided models, three-dimensional printing (3DP) technology can exercise local control over the material composition, microstructure, and surface texture during it layer-by-layer manufacturing process to endow the products with special properties. It can be a useful tool in the development of novel solid dosage forms.
Method: In this study, a novel fast disintegrating tablet (FDT) with loose powders in it was designed and fabricated using 3DP process.