Objective: To assess whether the basic reproduction number (R0) of COVID-19 is different across countries and what national-level demographic, social, and environmental factors other than interventions characterize initial vulnerability to the virus.
Methods: We fit logistic growth curves to reported daily case numbers, up to the first epidemic peak, for 58 countries for which 16 explanatory covariates are available. This fitting has been shown to robustly estimate R0 from the specified period.
Corals are experiencing unprecedented decline from climate change-induced mass bleaching events. Dispersal not only contributes to coral reef persistence through demographic rescue but can also hinder or facilitate evolutionary adaptation. Locations of reefs that are likely to survive future warming therefore remain largely unknown, particularly within the context of both ecological and evolutionary processes across complex seascapes that differ in temperature range, strength of connectivity, network size, and other characteristics.
View Article and Find Full Text PDFGlobal environmental change is challenging species with novel conditions, such that demographic and evolutionary trajectories of populations are often shaped by the exchange of organisms and alleles across landscapes. Current ecological theory predicts that random networks with dispersal shortcuts connecting distant sites can promote persistence when there is no capacity for evolution. Here, we show with an eco-evolutionary model that dispersal shortcuts across environmental gradients instead hinder persistence for populations that can evolve because long-distance migrants bring extreme trait values that are often maladaptive, short-circuiting the adaptive response of populations to directional change.
View Article and Find Full Text PDFTheor Popul Biol
February 2019
Natural selection can favour cooperation, but it is unclear when cooperative populations should be larger than less cooperative ones. While experiments have shown that cooperation can increase population size, cooperation and population size can become negatively correlated if spatial processes affect both variables in opposite directions. We use a simple mathematical model of spatial common-pool resource production to investigate how space affects the cooperation-population size relationship.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2019
Understanding why some renewable resources are overharvested while others are conserved remains an important challenge. Most explanations focus on institutional or ecological differences among resources. Here, we provide theoretical and empirical evidence that conservation and overharvest can be alternative stable states within the same exclusive-resource management system because of path-dependent processes, including slow institutional adaptation.
View Article and Find Full Text PDFSpatial clustering is thought to favour the evolution of cooperation because it puts cooperators in a position to help each other. However, clustering also increases competition. The fate of cooperation may depend on how much cooperators cluster relative to defectors, but these clustering differences have not been the focus of previous models and experiments.
View Article and Find Full Text PDFLocalized interactions are predicted to favour the evolution of cooperation amongst individuals within a population. One important factor that can localize interactions is habitat patchiness. We hypothesize that habitats with greater patchiness (greater edge-to-area ratio) can facilitate the maintenance of cooperation.
View Article and Find Full Text PDFCooperation plays a crucial role in many aspects of biology. We use the spatial ecological metrics of local densities to measure and model cooperative interactions. While local densities can be found as technical details in current theories, we aim to establish them as central to an approach that describes spatial effects in the evolution of cooperation.
View Article and Find Full Text PDF