The GABA receptor (GABABR) is a class C G protein-coupled receptor (GPCR) that functions as an obligate heterodimer, composed of two heptahelical subunits, GABABR subunit 1 (R1) and GABABR subunit 2 (R2). In this study, we generated and pharmacologically characterized constitutively active GABABR mutants as novel tools to explore the molecular mechanisms underlying receptor function. A single amino acid substitution, T290K, in the R1 agonist binding domain results in ligand-independent signaling when this mutant subunit is coexpressed with wild-type R2.
View Article and Find Full Text PDFGlucagon-like peptide-1 (GLP-1) and its cognate receptor play an important physiological role in maintaining blood glucose homeostasis. A GLP-1 receptor (GLP-1R) polymorphism in which threonine 149 is substituted with a methionine residue has been recently identified in a patient with type 2 diabetes but was not found in non-diabetic control subjects. We have functionally assessed the recombinant GLP-1R variant after transient expression in COS-7 and HEK 293 cells.
View Article and Find Full Text PDFThe Cholecystokinin type 1 and type 2 receptors (CCK-1R and CCK-2R) share >50% amino acid identity, as well as subnanomolar affinity for the endogenous peptide cholecystokinin octapeptide (CCK-8). Although it is likely that these two receptor subtypes share amino acids that confer CCK-8 affinity, it has been difficult to identify such residues. We have examined the role of several transmembrane domain (TMD) IV residues that are common to both CCK receptor subtypes.
View Article and Find Full Text PDFThe search for small-molecule drugs that act at peptide hormone receptors has resulted in the identification of a wide variety of antagonists. In contrast, the discovery of nonpeptide agonists has been far more elusive. We have used a constitutively active mutant of the cholecystokinin 2 receptor (CCK-2R) as a sensitive screen to detect ligand activity.
View Article and Find Full Text PDFDopamine is an important neurotransmitter in the central nervous system of both Drosophila and mammals. Despite the evolutionary distance, functional parallels exist between the fly and mammalian dopaminergic systems, with both playing roles in modulating locomotor activity, sexual function, and the response to drugs of abuse. In mammals, dopamine exerts its effects through either dopamine 1-like (D1-like) or D2-like G protein-coupled receptors.
View Article and Find Full Text PDF