Multitiered quantitative analysis of biological systems is rapidly becoming the desired approach to study hierarchical functional interactions between proteins and metabolites. We describe here a novel systematic approach to analyze organisms with complex metabolic regulatory networks. By using precise analytical methods to measure biochemical constituents and their relative abundance in whole plasma of transgenic ApoE*3-Leiden mice and an isogenic wild-type control group, simultaneous snapshots of metabolic and protein states were obtained.
View Article and Find Full Text PDFThe advent of the "-omics revolution" has forced us to reevaluate our ability to acquire, measure, and handle large data sets. Omic platforms such as expression arrays and mass spectrometry, with their exquisite selectivity, sensitivity, and specificity, are unrivaled technologies for detection, quantitation, and identification of DNA, messenger RNA, proteins, and metabolites derived from complex body tissue and fluids. More recently, attempts have been made to capture the utility of these platform technologies and combine them under the umbrella of systems biology, also referred to as pathway, network, or integrative biology.
View Article and Find Full Text PDFPharmaceutical companies are facing an urgent need to both increase their lead compound and clinical candidate portfolios and satisfy market demands for continued innovation and revenue growth. Here, we outline an emerging approach that attempts to facilitate and alleviate many of the current drug discovery issues and problems. This is, in part, achieved through the systematic integration of technologies, which results in a superior output of data and information, thereby enhancing our understanding of biological function, chemico-biological interactions and, ultimately, drug discovery.
View Article and Find Full Text PDF