The more than 80,000 chemicals in commerce present a challenge for hazard assessments that toxicity testing in the 21 century strives to address through high-throughput screening (HTS) assays. Assessing chemical effects on human development adds an additional layer of complexity to the screening, with a need to capture complex and dynamic events essential for proper embryo-fetal development. HTS data from ToxCast/Tox21 informs systems toxicology models, which incorporate molecular targets and biological pathways into mechanistic models describing the effects of chemicals on human cells, 3D organotypic culture models, and small model organisms.
View Article and Find Full Text PDFEmbryonic vascular disruption is an important adverse outcome pathway (AOP) as chemical disruption of cardiovascular development induces broad prenatal defects. High throughput screening (HTS) assays aid AOP development although linking in vitro data to in vivo apical endpoints remains challenging. This study evaluated two anti-angiogenic agents, 5HPP-33 and TNP-470, across the ToxCastDB HTS assay platform and anchored the results to complex in vitro functional assays: the rat aortic explant assay (AEA), rat whole embryo culture (WEC), and the zebrafish embryotoxicity (ZET) assay.
View Article and Find Full Text PDFEmbryonic vascular disruption is an important adverse outcome pathway (AOP) as chemical disruption of cardiovascular development induces broad prenatal defects. High-throughput screening (HTS) assays aid AOP development although linking in vitro data to in vivo apical endpoints remains challenging. This study evaluated two anti-angiogenic agents, 5HPP-33 and TNP-470, across the ToxCastDB HTS assay platform and anchored the results to complex in vitro functional assays: the rat aortic explant assay (AEA), rat whole embryo culture (WEC), and the zebrafish embryotoxicity (ZET) assay.
View Article and Find Full Text PDFAgrochemical formulations have been underrepresented in validation efforts for implementing alternative eye irritation approaches but represent a significant opportunity to reduce animal testing. This study assesses the utility of the neutral red release assay (NRR) and EpiOcular™ assay (EO) for predicting the eye irritation potential of 64 agrochemical formulations relative to Draize data. In the NRR, formulations with an NRR50 value ≤ 50 mg/mL were categorized as UN GHS Cat 1 and those >250 mg/mL were classified as UN GHS Non Classified (NC).
View Article and Find Full Text PDFDietary administration is a relevant route of oral exposure for regulatory toxicity studies of agrochemicals as it mimics potential human intake of the chemical via treated crops and commodities. Moreover, dietary administration of test compounds during a developmental toxicity study can deliver a prolonged and stable systemic exposure to the embryo or fetus at all stages of development. In this study, strategies were employed to optimize rabbit test material consumption via diet.
View Article and Find Full Text PDFConnectivity mapping is a method used in the pharmaceutical industry to find connections between small molecules, disease states, and genes. The concept can be applied to a predictive toxicology paradigm to find connections between chemicals, adverse events, and genes. In order to assess the applicability of the technique for predictive toxicology purposes, we performed gene array experiments on 34 different chemicals: bisphenol A, genistein, ethinyl-estradiol, tamoxifen, clofibrate, dehydorepiandrosterone, troglitazone, diethylhexyl phthalate, flutamide, trenbolone, phenobarbital, retinoic acid, thyroxine, 1α,25-dihydroxyvitamin D3, clobetasol, farnesol, chenodeoxycholic acid, progesterone, RU486, ketoconazole, valproic acid, desferrioxamine, amoxicillin, 6-aminonicotinamide, metformin, phenformin, methotrexate, vinblastine, ANIT (1-naphthyl isothiocyanate), griseofulvin, nicotine, imidacloprid, vorinostat, 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) at the 6-, 24-, and 48-hour time points for 3 different concentrations in the 4 cell lines: MCF7, Ishikawa, HepaRG, and HepG2 GEO (super series accession no.
View Article and Find Full Text PDFAssessment of ocular irritation is an essential component of any risk assessment. A number of (Q)SARs and expert systems have been developed and are described in the literature. Here, we focus on three in silico models (TOPKAT, BfR rulebase implemented in Toxtree, and Derek Nexus) and evaluate their performance using 1644 in-house and 123 European Centre for Toxicology and Ecotoxicology of Chemicals (ECETOC) compounds with existing in vivo ocular irritation classification data.
View Article and Find Full Text PDFThere is great interest in assessing the in vivo toxicity of chemicals using nonanimal alternatives. However, acute mammalian toxicity is not adequately predicted by current in silico or in vitro approaches. Mechanisms of acute toxicity are likely conserved across invertebrate, aquatic, and mammalian species, suggesting that dose-response concordance would be high and in vitro mechanistic data could predict responses in multiple species under conditions of similar bioavailability.
View Article and Find Full Text PDFAssessment of skin sensitization potential is an important component of the safety evaluation process for agrochemical products. Recently, non-animal approaches including the KeratinoSens™ assay have been developed for predicting skin sensitization potential. Assessing the utility of the KeratinoSens™ assay for use with multi-component mixtures such as agrochemical formulations has not been previously evaluated and is a significant need.
View Article and Find Full Text PDFInterest in applying 21st-century toxicity testing tools for safety assessment of industrial chemicals is growing. Whereas conventional toxicology uses mainly animal-based, descriptive methods, a paradigm shift is emerging in which computational approaches, systems biology, high-throughput in vitro toxicity assays, and high-throughput exposure assessments are beginning to be applied to mechanism-based risk assessments in a time- and resource-efficient fashion. Here we describe recent advances in predictive safety assessment, with a focus on their strategic application to meet the changing demands of the chemical industry and its stakeholders.
View Article and Find Full Text PDFBirth Defects Res B Dev Reprod Toxicol
February 2015
Histiotrophic nutrition via the visceral yolk sac is an essential nutritional pathway of the rodent conceptus, and inhibition of this pathway may cause growth retardation, malformations, and death in rodent embryos. Morphologic differences among species during early development indicate that the visceral yolk sac histiotrophic nutrition pathway may be of lesser importance in nonrodent species, including humans. Here, comparative studies were conducted with inhibitors of different steps in the visceral yolk sac histiotrophic nutrition pathway to determine whether the rabbit is similarly responsive to the rat.
View Article and Find Full Text PDFFutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo responses from in vitro and in silico data, and to define the goals for the future. Presentations and discussions were held on priority concerns such as predicting and modeling of metabolism, cell growth and differentiation, effects on sensitive subpopulations, and integrating data into risk assessment.
View Article and Find Full Text PDFNon-genotoxic carcinogens act by promoting the clonal expansion of preneoplastic cells by directly or indirectly stimulating cell division or inhibiting cell loss in the target organ. The specific mode-of-action (MoA) by which some non-genotoxic carcinogens ultimately cause cancer is not completely understood. To date, there are several proposed MoAs for non-genotoxic carcinogens, and some of these propose inhibition of apoptosis as one of the key events.
View Article and Find Full Text PDFBirth Defects Res B Dev Reprod Toxicol
December 2014
Validation of alternative assays requires comparison of the responses to toxicants in the alternative assay with in vivo responses. Chemicals have been classified as "positive" or "negative" in vivo, despite the fact that developmental toxicity is conditional on magnitude of exposure. We developed a list of positive and negative developmental exposures, with exposure defined by toxicokinetic data, specifically maternal plasma Cmax .
View Article and Find Full Text PDFIn rats, 2-amino-2-methylpropanol (AMP) caused an increase in postimplantation loss in an oral reproductive/developmental toxicity screening assay but not in a dermal developmental toxicity assay. Studies were performed to characterize the mode of action and determine whether the postimplantation loss was a result of direct embryotoxicity or a maternally mediated effect. The studies identified that the postimplantation loss occurs shortly after implantation, has a steep dose response with a clear threshold, requires exposure to AMP for a period of approximately 2-3 weeks prior to gestation and does not involve direct embryo toxicity.
View Article and Find Full Text PDFSulfoxaflor (CAS# 946578-00-3) is a novel active substance with insecticidal properties mediated via its agonism on the highly abundant insect nicotinic acetylcholine receptor (nAChR). In developmental and reproductive toxicity studies, gestational exposure caused fetal abnormalities (primarily limb contractures) and reduced neonatal survival in rats, but not rabbits, following high-dose dietary exposure. Sulfoxaflor induced these effects via a novel mode of action (MoA) mediated by the fetal-type muscle nAChR with the following key events: (1) binding to the receptor, (2) agonism on the receptor, causing (3) sustained muscle contracture in the near-term fetus and neonatal offspring.
View Article and Find Full Text PDFHigh dose gavage administration of ethylene glycol (EG) induces teratogenicity in rodents, but not in rabbits, resulting from saturation of intermediate EG metabolism and glycolic acid (GA) accumulation. In vivo, rat embryos sequester GA 2-4-fold higher than maternal blood, a phenomenon absent in rabbits and proposed not to occur in humans. This research explored the mechanisms of GA disposition into rat and rabbit conceptuses using whole embryo culture (WEC).
View Article and Find Full Text PDFBased on existing data and previous work, a series of studies is proposed as a basis toward a pragmatic early step in transforming toxicity testing. These studies were assembled into a data-driven framework that invokes successive tiers of testing with margin of exposure (MOE) as the primary metric. The first tier of the framework integrates data from high-throughput in vitro assays, in vitro-to-in vivo extrapolation (IVIVE) pharmacokinetic modeling, and exposure modeling.
View Article and Find Full Text PDFBirth Defects Res A Clin Mol Teratol
January 2013
The Teratology Society held its fourth strategic planning session in Albuquerque, NM, April 10-12, 2012, and launched the 2012-2017 Strategic Plan in conjunction with the 2012 annual meeting in Baltimore, MD. Building on the energy of the successful implementation of prior strategic plans (San Diego, 2007; Nashville,TN 2002; Cincinnati, OH 1998), session participants worked to identify barriers to success as a scientific society, as well as impending challenges and opportunities to which the Society needs to respond. The following report provides an overview of the Strategic Planning process, objectives, activities, and conclusions.
View Article and Find Full Text PDFAlthough the rabbit is used extensively in developmental toxicity testing, relatively little is known about the fundamental developmental biology of this species let alone mechanisms underlying developmental toxicity. This paucity of information about the rabbit is partly due to the historic lack of whole embryo culture (WEC) methods for the rabbit, which have only been made available fairly recently. In rabbit WEC, early somite stage embryos (gestation day 9) enclosed within an intact amnion and attached to the visceral yolk sac are dissected from maternal tissues and placed in culture for up to 48 h at approximately 37°C and are continuously exposed to an humidified gas atmosphere mixture in a rotating culture system.
View Article and Find Full Text PDFSulfoxaflor (X11422208), a novel agricultural molecule, induced fetal effects (forelimb flexure, hindlimb rotation, and bent clavicle) and neonatal death in rats at high doses (≥ 400 ppm in diet); however, no such effects occurred in rabbit dietary studies despite achieving similar maternal and fetal plasma exposure levels. Mode-of-action (MoA) studies were conducted to test the hypothesis that the effects in rats had a single MoA induced by sulfoxaflor agonism on the fetal rat muscle nicotinic acetylcholine receptor (nAChR). The studies included cross-fostering and critical windows of exposure studies in rats, fetal ((α1)(2)β1γδ) and adult ((α1)(2)β1δε) rat and human muscle nAChR in vitro agonism experiments, and neonatal rat phrenic nerve-hemidiaphragm contracture studies.
View Article and Find Full Text PDFBirth Defects Res B Dev Reprod Toxicol
April 2012
N-(2-aminoethyl)ethanolamine (AEEA) caused aneurysms of the great vessels in rats exposed in utero and during the first days post partum, exacerbated by postnatal treatment of the lactating dams (Moore et al., 2012). The purpose of this work was to examine the systemic availability of AEEA during gestation and early lactation.
View Article and Find Full Text PDFBirth Defects Res B Dev Reprod Toxicol
April 2012
N-(2-Aminoethyl)ethanolamine (AEEA) induced malformations of the great vessels in the offspring of rats treated during gestation and early lactation (Schneider et al., 2012. Birth Defects Res B Dev Reprod Toxicol [in press]).
View Article and Find Full Text PDFDiiodomethyl-p-tolylsulfone (DIMPTS) was tested in developmental toxicity (DT) and reproductive toxicity studies. In the rat DT study, DIMPTS was administered at 0, 100, 300 or 1000 mg/kg/day. Maternal toxicity as evidenced by reductions in body weight gain or feed consumption at 1000 and, to a lesser extent, 300 mg/kg/day.
View Article and Find Full Text PDFThe biocide diiodomethyl-p-tolylsulfone (DIMPTS) caused dystocia, decreased neonatal survival and hypothyroidism in rat reproduction studies resembling the effects caused by iodine. One molecule of DIMPTS contains two iodine moieties that are hydrolyzed upon ingestion and systemically absorbed, suggesting iodine toxicity as a probable mode of action for the effects observed in rats. This study compared the effects induced by DIMPTS and an equimolar concentration of its de-iodinated analogue, methyl-p-tolylsulfone (MPTS).
View Article and Find Full Text PDF