Attempts to achieve a functional cure or amelioration of the severe X linked bleeding disorders haemophilia A (factor VIII deficiency) and haemophilia B (factor IX deficiency) using AAV-based vectors have been frustrated by immune responses that limit efficacy and durability. The immune responses include adaptive and innate pathways as well as cytokine mediated inflammation, especially of the target organ cells-hepatocytes. Immune suppression has only been partly effective in clinical trials at ameliorating the immune response and the lack of good animal models has delayed progress in identifying mechanisms and developing more effective approaches to controlling these effects of AAV gene transfer.
View Article and Find Full Text PDFBackground: Mathematical models of coagulation have been developed to mirror thrombin generation in plasma, with the aim of investigating how variation in coagulation factor levels regulates hemostasis. However, current models vary in the reactions they capture and the reaction rates used, and their validation is restricted by a lack of large coherent datasets, resulting in questioning of their utility.
Objectives: To address this debate, we systematically assessed current models against a large dataset, using plasma coagulation factor levels from 348 individuals with normal hemostasis to identify the causes of these variations.
Background: FLT180a (verbrinacogene setparvovec) is a liver-directed adeno-associated virus (AAV) gene therapy that uses a synthetic capsid and a gain-of-function protein to normalize factor IX levels in patients with hemophilia B.
Methods: In this multicenter, open-label, phase 1-2 trial, we assessed the safety and efficacy of varying doses of FLT180a in patients with severe or moderately severe hemophilia B (factor IX level, ≤2% of normal value). All the patients received glucocorticoids with or without tacrolimus for immunosuppression to decrease the risk of vector-related immune responses.
The single most important step on the path to our modern understanding of blood coagulation and haemophilia in the 20th century was taken by British pathologist Robert Gwyn Macfarlane with his 1964 publication 'An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier'. In the same year, Ratnoff and Davie in the USA reached the same conclusion. Macfarlane and Rosemary Biggs had previously, in 1952, discovered factor IX as the factor deficient in haemophilia B.
View Article and Find Full Text PDFRes Pract Thromb Haemost
February 2020
Background: Global assays measure the interactions of coagulants, anticoagulants, and platelets on thrombin generation and may reflect the comprehensive coagulation potential in patients with hemophilia better than conventional assays.
Objectives: The objectives of the current study were to investigate the value of global assays for measuring and monitoring the coagulation potential of patients with hemophilia A (HA).
Patients/methods: Rotational thromboelastometry, thrombin generation assay (TGA), and activated partial thromboplastin time (APTT) clot waveform analysis were investigated in a cohort of patients with severe, moderate, and mild HA and compared with conventional assays.
The foundation of haemophilia A therapy in the last 35 years has been critically dependent on isolation of the Factor VIII (FVIII) protein and discovery of the cDNA sequence of the FVIII gene, published in 1984. Identification of the FVIII sequence resulted in a new era of recombinant concentrates and led to significant improvements in safety, set against the tragedy of widespread HIV and hepatitis infections in haemophilia patients from contaminated plasma-based products. We chronicle the scientific methods and race leading up to the publication of the FVIII DNA sequence and the legacy that follows through to revolutionary gene therapy treatment in clinical trials today.
View Article and Find Full Text PDFThe von Willebrand factor (VWF) and coagulation factor VIII (FVIII) are intricately involved in hemostasis. A tight, noncovalent complex between VWF and FVIII prolongs the half-life of FVIII in plasma, and failure to form this complex leads to rapid clearance of FVIII and bleeding diatheses such as hemophilia A and von Willebrand disease (VWD) type 2N. High-resolution insight into the complex between VWF and FVIII has so far been strikingly lacking.
View Article and Find Full Text PDFHaemophilia therapy has undergone very rapid evolution in the last 10 years. The major limitation of current replacement therapy is the short half-life of factors VIII and IX. These half-lives have been extended by the addition of various moieties, allowing less frequent infusion regimens.
View Article and Find Full Text PDFThe best currently available treatments for hemophilia A and B (factor VIII or factor IX deficiency, respectively) require frequent intravenous infusion of highly expensive proteins that have short half-lives. Factor levels follow a saw-tooth pattern that is seldom in the normal range and falls so low that breakthrough bleeding occurs. Most hemophiliacs worldwide do not have access to even this level of care.
View Article and Find Full Text PDFGene therapy provides hope for a cure for patients with hemophilia by establishing continuous endogenous expression of factor VIII or factor IX following transfer of a functional gene copy to replace the hemophilic patient's own defective gene. Hemophilia may be considered a "low-hanging fruit" for gene therapy because a small increment in blood factor levels (≥2% of normal) significantly improves the bleeding tendency from severe to moderate, eliminating most spontaneous bleeds. After decades of research, the first trial to provide clear evidence of efficiency after gene transfer in patients with hemophilia B using adeno-associated virus vectors was reported by the authors' group in 2011.
View Article and Find Full Text PDFBackground: In patients with severe hemophilia B, gene therapy that is mediated by a novel self-complementary adeno-associated virus serotype 8 (AAV8) vector has been shown to raise factor IX levels for periods of up to 16 months. We wanted to determine the durability of transgene expression, the vector dose-response relationship, and the level of persistent or late toxicity.
Methods: We evaluated the stability of transgene expression and long-term safety in 10 patients with severe hemophilia B: 6 patients who had been enrolled in an initial phase 1 dose-escalation trial, with 2 patients each receiving a low, intermediate, or high dose, and 4 additional patients who received the high dose (2×10(12) vector genomes per kilogram of body weight).
Low molecular weight heparin (LMWH) given to inhibit coagulation and reduce the risk of thrombosis, is typically monitored by anti-Xa assay. However, anti-Xa levels may not necessarily provide an accurate measure of coagulation inhibition. Moreover, pregnancy is associated with hypercoagulability, which may compromise the efficacy of LMWH.
View Article and Find Full Text PDFAlthough much of the function of von Willebrand factor (VWF) has been revealed, detailed insight into the molecular structure that enables VWF to orchestrate hemostatic processes, in particular factor VIII (FVIII) binding and stabilization in plasma, is lacking. Here, we present the high-resolution solution structure and structural dynamics of the D' region of VWF, which constitutes the major FVIII binding site. D' consists of 2 domains, trypsin-inhibitor-like (TIL') and E', of which the TIL' domain lacks extensive secondary structure, is strikingly dynamic and harbors a cluster of pathological mutations leading to decreased FVIII binding affinity (type 2N von Willebrand disease [VWD]).
View Article and Find Full Text PDFRecombinant adeno-associated virus (rAAV) vectors encoding human factor VIII (hFVIII) were systematically evaluated for hemophilia A (HA) gene therapy. A 5.7-kb rAAV-expression cassette (rAAV-HLP-codop-hFVIII-N6) containing a codon-optimized hFVIII cDNA in which a 226 amino acid (aa) B-domain spacer replaced the entire B domain and a hybrid liver-specific promoter (HLP) mediated 10-fold higher hFVIII levels in mice compared with non-codon-optimized variants.
View Article and Find Full Text PDFBackground: Hemophilia B, an X-linked disorder, is ideally suited for gene therapy. We investigated the use of a new gene therapy in patients with the disorder.
Methods: We infused a single dose of a serotype-8-pseudotyped, self-complementary adenovirus-associated virus (AAV) vector expressing a codon-optimized human factor IX (FIX) transgene (scAAV2/8-LP1-hFIXco) in a peripheral vein in six patients with severe hemophilia B (FIX activity, <1% of normal values).
We explored adeno-associated viral vector (AAV)-mediated gene transfer in the perinatal period in animal models of severe congenital factor VII (FVII) deficiency, a disease associated with early postnatal life-threatening hemorrhage. In young adult mice with plasma FVII < 1% of normal, a single tail vein administration of AAV (1 × 10(13) vector genomes [vg]/kg) resulted in expression of murine FVII at 266% ± 34% of normal for ≥ 67 days, which mediated protection against fatal hemorrhage and significantly improved survival. Codon optimization of human FVII (hFVIIcoop) improved AAV transgene expression by 37-fold compared with the wild-type hFVII cDNA.
View Article and Find Full Text PDFAn archive of congenital human diseases is presented, aiming to contain all those where recessive (biallelic) can be compared with X-linked and/or dominant (monoallelic) inheritance. A significant deficit of recessive inheritance is evident, both in disease inheritance and in contribution to inheritance per known disease gene. The deficit contrasts with expectation derived from the cell biology of mutation, and from the importance of recessive mutation in evolution and its preponderance in N-ethyl-N-nitrosourea (ENU) mutagenesis.
View Article and Find Full Text PDFAlthough factor XI (FXI) concentrate is an effective replacement therapy in severe FXI deficiency without inhibitors, some patients are unwilling to receive it because it is plasma-derived. We report on the use and monitoring of low dose, recombinant factor VIIa (rFVIIa, NovoSeven®), to cover surgery (caesarean section, cholecystectomy and abdominoplasty) in four female patients (FXI:C 2-4 IU/dl, aged 32-51 years) who wished to avoid exposure to plasma. None of our patients had inhibitors to FXI.
View Article and Find Full Text PDFHemophilia is a bleeding disorder with X-linked inheritance. Current prenatal diagnostic methods for hemophilia are invasive and pose a risk to the fetus. Cell-free fetal DNA analysis in maternal plasma provides a noninvasive mean of assessing fetal sex in such pregnancies.
View Article and Find Full Text PDFGene therapy for hemophilia A would be facilitated by development of smaller expression cassettes encoding factor VIII (FVIII), which demonstrate improved biosynthesis and/or enhanced biologic properties. B domain deleted (BDD) FVIII retains full procoagulant function and is expressed at higher levels than wild-type FVIII. However, a partial BDD FVIII, leaving an N-terminal 226 amino acid stretch (N6), increases in vitro secretion of FVIII tenfold compared with BDD-FVIII.
View Article and Find Full Text PDFStudy Objectives: We reviewed the management and treatment outcomes of menorrhagia in adolescents with inherited bleeding disorders and assessed the impact of menorrhagia on their quality of life.
Design: Retrospective review of case notes and a questionnaire study.
Setting: Comprehensive-care hemophilia treatment center.
Blood Coagul Fibrinolysis
December 2009
Anticoagulation may in the future become a therapeutic option for the prevention of liver fibrosis, such as due to recurrent hepatitis C virus infection after liver transplantation. Currently, there are other indications for anticoagulation after liver transplantation but no data regarding its safety. The objective of the study was to audit the safety of anticoagulation after liver transplantation.
View Article and Find Full Text PDF