The phytochemical investigation of the leaves and the roots of Suregada procera afforded the new ent-abietane diterpenoid sureproceriolide A (1) along with the known secondary metabolites 8,14β:11,12α-diepoxy-13(15)-abietane-16,12-olid (2), jolkinolide A (3), jolkinolide E (4), ent-pimara-8(14),15-dien-19-oic acid (5), sitosterol (6), oleana-9(11):12-dien-3β-ol (7), and oleic acid (8). Their structures were elucidated by NMR spectroscopic and mass spectrometric analyses, and the structure of jolkinolide A (3) was confirmed by single-crystal X-ray diffraction analysis. Sureproceriolide A (1) showed modest activity against the Gram-positive bacterium Staphylococcus lugdunensis (MIC = 31.
View Article and Find Full Text PDFThree new (-) and six known rotenoids (-), along with three known isoflavones (-), were isolated from the leaves of ssp. . A new glycosylated isoflavone (), four known isoflavones (-), and one known chalcone () were isolated from the root wood extract of the same plant.
View Article and Find Full Text PDFScreening a library of 1,200 preselected kinase inhibitors for anti-human rhinovirus 2 (HRV-2) activity in HeLa cells identified a class of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) as effective virus blockers. These were based on the 4-anilinoquinazoline-7-oxypiperidine scaffold, with the most potent representative AZ5385 inhibiting the virus with EC of 0.35 µM.
View Article and Find Full Text PDFN- and O-glycans are both important constituents of viral envelope glycoproteins. O-linked glycosylation can be initiated by any of 20 different human polypeptide O-acetylgalactosaminyl transferases, resulting in an important functional O-glycan heterogeneity. O-glycans are organized as solitary glycans or in clusters of multiple glycans forming mucin-like domains.
View Article and Find Full Text PDFSix new crotofolane diterpenoids (-) and 13 known compounds (-) were isolated from the MeOH-CHCl (1:1, v/v) extracts of the leaves and stem bark of . The structures of the new compounds were elucidated by extensive analysis of spectroscopic and mass spectrometric data. The structure of crotokilwaepoxide A () was confirmed by single-crystal X-ray diffraction, allowing for the determination of its absolute configuration.
View Article and Find Full Text PDFThe leaf extract of gave two new modified -abietane diterpenoids, zanzibariolides A () and B (), and two known triterpenoids, simiarenol () and β-amyrin (). The structures of the isolated compounds were elucidated based on NMR and MS data analysis. Single-crystal X-ray diffraction was used to establish the absolute configurations of compounds and .
View Article and Find Full Text PDFThe diffusion of viruses at the cell membrane is essential to reach a suitable entry site and initiate subsequent internalization. Although many viruses take advantage of glycosaminoglycans (GAG) to bind to the cell surface, little is known about the dynamics of the virus-GAG interactions. Here, single-particle tracking of the initial interaction of individual herpes simplex virus 1 (HSV-1) virions reveals a heterogeneous diffusive behavior, regulated by cell-surface GAGs with two main diffusion types: confined and normal free.
View Article and Find Full Text PDFEthnopharmacological Relevance: Except for few highly pathogenic viruses, no antiviral drug has been approved for treatment of viral infections in humans. Plant extracts, selected based on their ethno-medical use, represent an important source of compounds for the development of novel candidate antiviral drugs. This especially concerns plants with ethnomedical records on their use in treatment of viral infections.
View Article and Find Full Text PDFHerpes simplex virus 1 (HSV-1) and 2 (HSV-2) can infect the central nervous system (CNS) with dire consequences; in children and adults, HSV-1 may cause focal encephalitis, while HSV-2 causes meningitis. In neonates, both viruses can cause severe, disseminated CNS infections with high mortality rates. Here, we differentiated human induced pluripotent stem cells (iPSCs) towards cortical neurons for infection with clinical CNS strains of HSV-1 or HSV-2.
View Article and Find Full Text PDFThe methanol root extract of Clerodendrum myricoides (Hochst.) Vatke afforded two new (1, 2) and two known (3, 4) iridoid glycosides. The structures of the isolated compounds were established based on NMR, IR, UV and MS data analyses.
View Article and Find Full Text PDFThe contribution of virus components to liberation of herpes simplex virus type 2 (HSV-2) progeny virions from the surface of infected cells is poorly understood. We report that the HSV-2 mutant deficient in the expression of a mucin-like membrane-associated glycoprotein G (mgG) exhibited defect in the release of progeny virions from infected cells manifested by ~2 orders of magnitude decreased amount of infectious virus in a culture medium as compared to native HSV-2. Electron microscopy revealed that the mgG deficient virions were produced in infected cells and present at the cell surface.
View Article and Find Full Text PDFSARS-CoV-2 was discovered among humans in Wuhan, China in late 2019, and then spread rapidly, causing a global pandemic. The virus was found to be transmitted mainly by respiratory droplets from infected persons or by direct contact. It was also shown to be excreted in feces, why we investigated whether the virus could be detected in wastewater and if so, to which extent its levels reflects its spread in society.
View Article and Find Full Text PDFMucin-like regions, characterized by a local high density of O-linked glycosylation, are found on the viral envelope glycoproteins of many viruses. Herpes simplex virus type 1 (HSV-1), for example, exhibits a mucin-like region on its glycoprotein gC, a viral protein involved in initial recruitment of the virus to the cell surface via interaction with sulfated glycosaminoglycans. So far, this mucin-like region has been proposed to play a key role in modulating the interactions with cellular glycosaminoglycans, and in particular to promote release of HSV-1 virions from infected cells.
View Article and Find Full Text PDFDiscovery and development of new antiviral therapies essentially rely on two key factors: an in-depth understanding of the mechanisms involved in viral infection and the development of fast and versatile drug screening platforms. To meet those demands, we present a biosensing platform to probe virus-cell membrane interactions on a single particle level. Our method is based on the formation of supported lipid bilayers from cell membrane material.
View Article and Find Full Text PDFMany viruses, including herpes simplex (HSV), are recruited to their host cells via interaction between their envelope glycoproteins and cell-surface glycosaminoglycans (GAGs). This initial attachment is of a multivalent nature, i.e.
View Article and Find Full Text PDFHerpes simplex virus (HSV) and many other viruses, including HIV, initiate infection of host cells by binding to glycosaminoglycan (GAG) chains of cell surface proteoglycans. Although GAG mimetics, such as sulfated oligo- and polysaccharides, exhibit potent antiviral activities in cultured cells, the prophylactic application of these inhibitors as vaginal microbicides failed to protect women upon their exposure to HIV. A possible explanation for this failure is that sulfated oligo- and polysaccharides exhibit no typical virucidal activity, as their interaction with viral particles is largely electrostatic and reversible and thereby vulnerable to competition with GAG-binding proteins of the genital tract.
View Article and Find Full Text PDFGlycoprotein C (gC) mediates the attachment of HSV-1 to susceptible host cells by interacting with glycosaminoglycans (GAGs) on the cell surface. gC contains a mucin-like region located near the GAG-binding site, which may affect the binding activity. Here, we address this issue by studying a HSV-1 mutant lacking the mucin-like domain in gC and the corresponding purified mutant protein (gCΔmuc) in cell culture and GAG-binding assays, respectively.
View Article and Find Full Text PDFHerpes simplex encephalitis (HSE), targeting the limbic system, is the most common cause of viral encephalitis in the Western world. Two pathways for viral entry to the central nervous system (CNS) in HSE have been suggested: either via the trigeminal nerve or via the olfactory tract. This question remains unsettled, and studies of viral spread between the two brain hemispheres are scarce.
View Article and Find Full Text PDFCoronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is a highly contagious pathogen that infects mainly ciliated cells of respiratory epithelium and type 1 pneumocytes in the alveoli frequently causing serious respiratory disease in infants, elderly, and immunocompromised patients. At present, prevention/treatment of RSV infection is limited to the use of specific anti-RSV antibody or an aerosol formulation of ribavirin, a drug of suboptimal efficacy and low safety profile. There is an urgent need for development of novel anti-RSV drugs and virucides.
View Article and Find Full Text PDFSeveral herpesviruses induce expression of the selectin receptor sialyl-Lewis X (sLe(x) ) by activating transcription of one or more of silent host FUT genes, each one encoding a fucosyltransferase that catalyses the rate-limiting step of sLe(x) synthesis. The aim here was to identify the identity of the glycoconjugate associated with sLe(x) glycoepitope in herpes simplex virus type 1 (HSV-1) infected human diploid fibroblasts, using immunofluorescence confocal microscopy. Cells infected with all tested HSV-1 strains analysed demonstrated bright sLe(x) fluorescence, except for two mutant viruses that were unable to induce proper expression of viral glycoprotein gC-1: One gC-1 null mutant and another mutant expressing gC-1 devoid of its major O-glycan-containing region (aa 33-116).
View Article and Find Full Text PDFA number of different viruses including respiratory syncytial virus (RSV) initiate infection of cells by binding to cell surface glycosaminoglycans and sulfated oligo- and polysaccharide mimetics of these receptors exhibit potent antiviral activity in cultured cells. We investigated whether the introduction of different lipophilic groups to the reducing end of sulfated oligosaccharides would modulate their anti-RSV activity. Our results demonstrate that the cholestanol-conjugated tetrasaccharide (PG545) exhibited ∼5- to 16-fold enhanced anti-RSV activity in cultured cells compared with unmodified sulfated oligosaccharides.
View Article and Find Full Text PDFTo search for novel drugs against human respiratory syncytial virus (RSV), we have screened a diversity collection of 16,671 compounds for anti-RSV activity in cultures of HEp-2 cells. Two of the hit compounds, i.e.
View Article and Find Full Text PDFWith the aim of providing compounds suitable for further development as microbicides active against human immunodeficiency virus 1 (HIV-1) a library containing 37 lipophile-conjugated sulfated oligosaccharides was screened for antiviral and virucidal activity against this virus. Four highly active compounds had low drug inhibition concentrations (IC(50)) for HIV-1 and inactivated viral particles, suggestive of virucidal properties. Two of these compounds comprising a sulfated tetrasaccharide linked to a cholestanol group by a glycosidic bond, showed low toxicity and high selectivity indices.
View Article and Find Full Text PDF