Background: Age-related macular degeneration (AMD) can be characterised by degeneration of retinal pigment epithelial (RPE) cells and the accumulation, in retinal drusen deposits, of amyloid beta-peptides proteolytically derived, by secretases, from the amyloid precursor protein (APP). Ultraviolet (UV) light exposure is a risk factor for the development of AMD.
Objectives: In the current study, we investigated whether APP and/or its proteolysis are linked to the UVA resistance or proliferation of ARPE-19 human RPE cells.
The amyloid cascade hypothesis proposes that excessive accumulation of amyloid beta-peptides is the initiating event in Alzheimer's disease. These neurotoxic peptides are generated from the amyloid precursor protein via sequential cleavage by β- and γ-secretases in the 'amyloidogenic' proteolytic pathway. Alternatively, the amyloid precursor protein can be processed via the 'non-amyloidogenic' pathway which, through the action of the α-secretase a disintegrin and metalloproteinase (ADAM) 10, both precludes amyloid beta-peptide formation and has the additional benefit of generating a neuroprotective soluble amyloid precursor protein fragment, sAPPα.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the leading form of dementia but lacks curative treatments. Current understanding of AD aetiology attributes the development of the disease to the misfolding of two proteins; amyloid-β (Aβ) and hyperphosphorylated tau, with their pathological accumulation leading to concomitant oxidative stress, neuroinflammation, and neuronal death. These processes are regulated at multiple levels to maintain homeostasis and avert disease.
View Article and Find Full Text PDFAmyloid-β protein precursor (AβPP) proteolysis by β- and γ-secretases generates neurotoxic amyloid-β (Aβ)-peptides in Alzheimer's disease (AD). We have investigated the role of histidine residues within the extracellular E1 copper binding and Aβ domains of AβPP in its proteolysis. By stably expressing histidine to alanine AβPP mutant constructs in SH-SY5Y cells, we show that mutations in the E1 copper binding domain had no impact on α- or β-secretase processing.
View Article and Find Full Text PDFThe toxic role of amyloid β peptides in Alzheimer's disease is well documented. Their generation is via sequential β- and γ-secretase cleavage of the membrane-bound amyloid precursor protein (APP). Other APP metabolites include the soluble ectodomains sAPPα and sAPPβ and also the amyloid precursor protein intracellular domain (AICD).
View Article and Find Full Text PDFMol Cancer Res
October 2012
A disintegrin and metalloproteinases (ADAMs) and matrix metalloproteinases (MMPs) are zinc metalloproteinases (ZMPs) that catalyze the "ectodomain shedding" of a range of cell surface proteins including signaling and adhesion molecules. These "sheddases" are associated with the invasion and metastasis of a range of cancers. Increased serum and tumor tissue levels of copper are also observed in several cancers, although little is known about how the metal might promote disease progression at the molecular level.
View Article and Find Full Text PDFNotch signalling is an evolutionarily conserved pathway involved in cell-fate specification. The initiating event in this pathway is the binding of a Notch receptor to a DSL (Delta/Serrate/Lag-2) ligand on neighbouring cells triggering the proteolytic cleavage of Notch within its extracellular juxtamembrane region; a process known as proteolytic 'shedding' and catalysed by members of the ADAM (a disintegrin and metalloproteinase) family of enzymes. Jagged1 is a Notch-binding DSL ligand which is also shed by an ADAM-like activity raising the possibility of bi-directional cell-cell Notch signalling.
View Article and Find Full Text PDFThe cellular prion protein (PrP(C)) is essential for the pathogenesis and transmission of prion diseases. PrP(C) is bound to the plasma membrane via a glycosylphosphatidylinositol anchor, although a secreted, soluble form has also been identified. Previously we reported that PrP(C) is subject to ectodomain shedding from the membrane by zinc metalloproteinases with a similar inhibition profile to those involved in shedding the amyloid precursor protein.
View Article and Find Full Text PDFIn overhydrated hereditary stomatocytosis (OHSt), the membrane raft-associated stomatin is deficient from the erythrocyte membrane. We have investigated two aspects of raft structure and function in OHSt erythrocytes. First, we have studied the distribution of other membrane and cytoskeletal proteins in rafts by analysis of detergent-resistant membranes (DRMs).
View Article and Find Full Text PDFProteolytic processing of the amyloid precursor protein (APP) by beta-secretase, beta-site APP cleaving enzyme (BACE1), is the initial step in the production of the amyloid beta (Abeta) peptide, which is involved in the pathogenesis of Alzheimer's disease. The normal cellular function of the prion protein (PrP(C)), the causative agent of the transmissible spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, remains enigmatic. Because both APP and PrP(C) are subject to proteolytic processing by the same zinc metalloproteases, we tested the involvement of PrP(C) in the proteolytic processing of APP.
View Article and Find Full Text PDFBackground: The early events underlying Alzheimer's disease (AD) remain uncertain, although environmental factors may be involved. Work in this laboratory has shown that the combination of herpes simplex virus type 1 (HSV1) in brain and carriage of the APOE-epsilon4 allele of the APOE gene strongly increases the risk of developing AD. The development of AD is thought to involve abnormal aggregation or deposition of a 39-43 amino acid protein--beta amyloid (Abeta)--within the brain.
View Article and Find Full Text PDFAngiotensin-converting enzyme-2 (ACE2) is a critical regulator of heart function and a cellular receptor for the causative agent of severe-acute respiratory syndrome (SARS), SARS-CoV (coronavirus). ACE2 is a type I transmembrane protein, with an extracellular N-terminal domain containing the active site and a short intracellular C-terminal tail. A soluble form of ACE2, lacking its cytosolic and transmembrane domains, has been shown to block binding of the SARS-CoV spike protein to its receptor.
View Article and Find Full Text PDFProtein Pept Lett
October 2004
Angiotensin-converting enzyme (ACE) is an example of a membrane-bound protein, which is shed from the cell surface in a soluble form by a post-translational proteolytic cleavage event involving a secretase. The secretase cleavage site in somatic ACE has been mapped to Arg-1203/Ser-1204, 24 residues proximal to the membrane-anchoring domain and the ADAM ('a disintegrin and metalloprotease') family of proteins may be involved in ACE shedding.
View Article and Find Full Text PDFNumerous transmembrane proteins, including the blood pressure regulating angiotensin converting enzyme (ACE) and the Alzheimer's disease amyloid precursor protein (APP), are proteolytically shed from the plasma membrane by metalloproteases. We have used an antisense oligonucleotide (ASO) approach to delineate the role of ADAM10 and tumour necrosis factor-alpha converting enzyme (TACE; ADAM17) in the ectodomain shedding of ACE and APP from human SH-SY5Y cells. Although the ADAM10 ASO and TACE ASO significantly reduced (> 81%) their respective mRNA levels and reduced the alpha-secretase shedding of APP by 60% and 30%, respectively, neither ASO reduced the shedding of ACE.
View Article and Find Full Text PDFThe cellular prion protein (PrP(C)) is essential for the pathogenesis and transmission of prion diseases. Whereas the majority of PrP(C) is bound to the cell membrane via a glycosylphosphatidylinositol (GPI) anchor, a secreted form of the protein has been identified. Here we show that PrP(C) can be shed into the medium of human neuroblastoma SH-SY5Y cells by both protease- and phospholipase-mediated mechanisms.
View Article and Find Full Text PDFIn the non-amyloidogenic pathway, the Alzheimer's amyloid precursor protein (APP) is cleaved within the amyloid-beta domain by alpha-secretase precluding deposition of intact amyloid-beta peptide. The large ectodomain released from the cell surface by the action of alpha-secretase has several neuroprotective properties. Studies with protease inhibitors have shown that alpha-secretase is a zinc metalloproteinase, and several members of the adamalysin family of proteins, tumour necrosis factor-alpha convertase (TACE, ADAM17), ADAM10, and ADAM9, all fulfil some of the criteria required of alpha-secretase.
View Article and Find Full Text PDFAngiotensin-converting enzyme (ACE), a type I integral membrane protein that plays a major role in vasoactive peptide metabolism, is shed from the plasma membrane by proteolytic cleavage within the juxtamembrane stalk. To investigate whether this shedding is regulated by lateral segregation in cholesterol-rich lipid rafts, Chinese hamster ovary cells and human neuroblastoma SH-SY5Y cells were transfected with either wild-type ACE (WT-ACE) or a construct with a glycosylphosphatidylinositol (GPI) anchor attachment signal replacing the transmembrane and cytosolic domains (GPI-ACE). In both cell types, GPI-ACE, but not WT-ACE, was sequestered in caveolin or flotillin-enriched lipid rafts and was released from the cell surface by treatment with phosphatidylinositol-specific phospholipase C.
View Article and Find Full Text PDFMultiple proteins are proteolytically shed from the membrane, including the amyloid precursor protein (APP) involved in Alzheimer's disease, the blood pressure regulating angiotensin converting enzyme (ACE), the low affinity IgE receptor CD23, and the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha). The inhibitory effect of a range of hydroxamic acid-based compounds on the secretases involved in cleaving and releasing these four proteins has been examined to build up a structure-activity relationship. Compounds have been identified that can discriminate between TNF-alpha convertase and the other three secretases (compound 15), between the shedding of CD23 and the shedding of APP and ACE (compound 21), and between the secretases and matrix metalloproteinase-1 (compound 22).
View Article and Find Full Text PDFTachykinin-related peptides (TRP) are widely distributed in the CNS of insects, where they are likely to function as transmitters/modulators. Metabolic inactivation by membrane ecto-peptidases is one mechanism by which peptide signalling is terminated in the CNS. Using locustatachykinin-1 (LomTK-1, GPSGFYGVRamide) as a substrate and several selective peptidase inhibitors, we have compared the types of membrane associated peptidases present in the CNS of four insects, Locusta migratoria, Leucophaea maderae, Drosophila melanogaster and Lacanobia oleracea.
View Article and Find Full Text PDF