Publications by authors named "Edward T Eng"

The heart, in addition to its primary role in blood circulation, functions as an endocrine organ by producing cardiac hormone natriuretic peptides. These hormones regulate blood pressure through the single-pass transmembrane receptor guanylyl cyclase A (GC-A), also known as natriuretic peptide receptor 1. The binding of the peptide hormones to the extracellular domain of the receptor activates the intracellular guanylyl cyclase domain of the receptor to produce the second messenger cyclic guanosine monophosphate.

View Article and Find Full Text PDF

Cryogenic electron microscopy (cryoEM) is a rapidly growing structural biology modality that has been successful in revealing molecular details of biological systems. However, unlike established biophysical and analytical techniques with calibration standards, cryoEM has lacked comprehensive biological test samples. Here, a cryoEM calibration sample consisting of a mixture of compatible macromolecules is introduced that can not only be used for resolution optimization, but also provides multiple reference points for evaluating instrument performance, data quality and image-processing workflows in a single experiment.

View Article and Find Full Text PDF

Cryogenic electron microscopy (cryoEM) is a rapidly growing structural biology modality that has been successful in revealing molecular details of biological systems. However, unlike established biophysical and analytical techniques with calibration standards, cryoEM has lacked comprehensive biological test samples. We introduce a cryoEM calibration sample that is a mixture of compatible macromolecules that can be used not only for resolution optimization but also provides multiple reference points for evaluating instrument performance, data quality, and image processing workflows in a single experiment.

View Article and Find Full Text PDF

CryoEM democratization is hampered by access to costly plunge-freezing supplies. We introduce methods, called CryoCycle, for reliably blotting, vitrifying, and reusing clipped cryoEM grids. We demonstrate that vitreous ice may be produced by plunging clipped grids with purified proteins into liquid ethane and that clipped grids may be reused several times for different protein samples.

View Article and Find Full Text PDF

During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAPs), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, here we use time-resolved cryogenic electron microscopy (cryo-EM) to capture four intermediates populated 120 ms or 500 ms after mixing Escherichia coli σ-RNAP and the λP promoter.

View Article and Find Full Text PDF
Article Synopsis
  • The report highlights recent advancements in Microcrystal Electron Diffraction (3D ED/MicroED) presented at a symposium in New York.
  • Key topics include access to instrumentation, applications for small molecules and biomacromolecules, and improvements in data collection and analysis software.
  • The field is in its early stages of adoption within the structural science community, indicating many opportunities for future development and innovation.
View Article and Find Full Text PDF

During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAP), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, time-resolved cryo-electron microscopy (cryo-EM) was used to capture four intermediates populated 120 or 500 milliseconds (ms) after mixing σ-RNAP and the λP promoter.

View Article and Find Full Text PDF

CryoEM democratization is hampered by access to costly plunge-freezing supplies. We introduce methods, called CryoCycle, for reliably blotting, vitrifying, and reusing clipped cryoEM grids. We demonstrate that vitreous ice may be produced by plunging clipped grids with purified proteins into liquid ethane and that clipped grids may be reused several times for different protein samples.

View Article and Find Full Text PDF

With the increasing spread of infectious diseases worldwide, there is an urgent need for novel strategies to combat them. Cryogenic sample electron microscopy (cryo-EM) techniques, particularly electron tomography (cryo-ET), have revolutionized the field of infectious disease research by enabling multiscale observation of biological structures in a near-native state. This review highlights the recent advances in infectious disease research using cryo-ET and discusses the potential of this structural biology technique to help discover mechanisms of infection in native environments and guiding in the right direction for future drug discovery.

View Article and Find Full Text PDF

Advancements in cryo-electron microscopy (cryoEM) techniques over the past decade have allowed structural biologists to routinely resolve macromolecular protein complexes to near-atomic resolution. The general workflow of the entire cryoEM pipeline involves iterating between sample preparation, cryoEM grid preparation, and sample/grid screening before moving on to high-resolution data collection. Iterating between sample/grid preparation and screening is typically a major bottleneck for researchers, as every iterative experiment must optimize for sample concentration, buffer conditions, grid material, grid hole size, ice thickness, and protein particle behavior in the ice, amongst other variables.

View Article and Find Full Text PDF

Cryoelectron microscopy (cryo-EM) methods have made meaningful contributions in a wide variety of scientific research fields. In structural biology, cryo-EM routinely elucidates molecular structure from isolated biological macromolecular complexes or in a cellular context by harnessing the high-resolution power of the electron in order to image samples in a frozen, hydrated environment. For structural chemistry, the cryo-EM method popularly known as microcrystal electron diffraction (MicroED) has facilitated atomic structure generation of peptides and small molecules from their three-dimensional crystal forms.

View Article and Find Full Text PDF

Bacteria and archaea acquire resistance to viruses and plasmids by integrating fragments of foreign DNA into the first repeat of a CRISPR array. However, the mechanism of site-specific integration remains poorly understood. Here, we determine a 560-kDa integration complex structure that explains how Pseudomonas aeruginosa Cas (Cas1-Cas2/3) and non-Cas proteins (for example, integration host factor) fold 150 base pairs of host DNA into a U-shaped bend and a loop that protrude from Cas1-2/3 at right angles.

View Article and Find Full Text PDF

Single-particle cryo-electron microscopy (cryoEM) is a swiftly growing method for understanding protein structure. With increasing demand for high-throughput, high-resolution cryoEM services comes greater demand for rapid and automated cryoEM grid and sample screening. During screening, optimal grids and sample conditions are identified for subsequent high-resolution data collection.

View Article and Find Full Text PDF

Cryo-FIB/SEM combined with cryo-ET has emerged from within the field of cryo-EM as the method for obtaining the highest resolution structural information of complex biological samples in-situ in native and non-native environments. However, challenges remain in conventional cryo-FIB/SEM workflows, including milling thick specimens with vitrification issues, specimens with preferred orientation, low-throughput when milling small and/or low concentration specimens, and specimens that distribute poorly across grid squares. Here we present a general approach called the 'Waffle Method' which leverages high-pressure freezing to address these challenges.

View Article and Find Full Text PDF

Cryo-electron microscopy (cryo-EM) continues its remarkable growth as a method for visualizing biological objects, which has been driven by advances across the entire pipeline. Developments in both single-particle analysis and in situ tomography have enabled more structures to be imaged and determined to better resolutions, at faster speeds, and with more scientists having improved access. This review highlights recent advances at each stageof the cryo-EM pipeline and provides examples of how these techniques have been used to investigate real-world problems, including antibody development against the SARS-CoV-2 spike during the recent COVID-19 pandemic.

View Article and Find Full Text PDF

Cryogenic electron microscopy (cryoEM) uses images of frozen hydrated biological specimens to produce macromolecular structures, opening up previously inaccessible levels of biological organization to high-resolution structural analysis. CryoEM has the potential for broad impact in biomedical research, including basic cell, molecular, and structural biology, and increasingly in drug discovery and vaccine development. Recent advances have led to the expansion of molecular and cellular structure determination at an exponential rate.

View Article and Find Full Text PDF

The β-adrenergic receptor (β-AR) can activate two families of G proteins. When coupled to Gs, β-AR increases cardiac output, and coupling to Gi leads to decreased responsiveness in myocardial infarction. By comparative structural analysis of turkey β-AR complexed with either Gi or Gs, we investigate how a single G-protein-coupled receptor simultaneously signals through two G proteins.

View Article and Find Full Text PDF

Thyroglobulin is a homodimeric glycoprotein that is essential for the generation of thyroid hormones in vertebrates. Upon secretion into the lumen of follicles in the thyroid gland, tyrosine residues within the protein become iodinated to produce monoiodotyrosine (MIT) and diiodotyrosine (DIT). A subset of evolutionarily conserved pairs of DIT (and MIT) residues can then engage in oxidative coupling reactions that yield either thyroxine (T; produced from coupling of a DIT `acceptor' with a DIT `donor') or triiodothyronine (T; produced from coupling of a DIT acceptor with an MIT donor).

View Article and Find Full Text PDF

The first step in gene expression in all organisms requires opening the DNA duplex to expose one strand for templated RNA synthesis. In , promoter DNA sequence fundamentally determines how fast the RNA polymerase (RNAP) forms "open" complexes (RPo), whether RPo persists for seconds or hours, and how quickly RNAP transitions from initiation to elongation. These rates control promoter strength in vivo, but their structural origins remain largely unknown.

View Article and Find Full Text PDF

Backtracking, the reverse motion of the transcriptase enzyme on the nucleic acid template, is a universal regulatory feature of transcription in cellular organisms but its role in viruses is not established. Here we present evidence that backtracking extends into the viral realm, where backtracking by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) may aid viral transcription and replication. Structures of SARS-CoV-2 RdRp bound to the essential nsp13 helicase and RNA suggested the helicase facilitates backtracking.

View Article and Find Full Text PDF

Backtracking, the reverse motion of the transcriptase enzyme on the nucleic acid template, is a universal regulatory feature of transcription in cellular organisms but its role in viruses is not established. Here we present evidence that backtracking extends into the viral realm, where backtracking by the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) may aid viral transcription and replication. Structures of SARS-CoV-2 RdRp bound to the essential nsp13 helicase and RNA suggested the helicase facilitates backtracking.

View Article and Find Full Text PDF
Article Synopsis
  • COVID-19, caused by the SARS-CoV-2 virus, has created a significant demand for high-quality Spike (S) protein for research and clinical use.
  • *The study evaluates the expression and purification of S protein using Expi293F and ExpiCHO-S cell lines, with findings showing that ExpiCHO-S cells yield better quality and quantity of S proteins.
  • *Research confirms the proteins have proper biochemical properties and antigenicity, while also revealing no new binding partners for the Spike protein in human cells, contributing to the understanding of SARS-CoV-2 for various applications.
View Article and Find Full Text PDF

Leginon is a system for automated data acquisition from a transmission electron microscope. Here we provide an updated summary of the overall Leginon architecture and an update of the current state of the package. We also highlight a few recent developments to provide some concrete examples and use cases.

View Article and Find Full Text PDF

Cardiac disease remains the leading cause of morbidity and mortality worldwide. The β-adrenergic receptor (β-AR) is a major regulator of cardiac functions and is downregulated in the majority of heart failure cases. A key physiological process is the activation of heterotrimeric G-protein Gs by β-ARs, leading to increased heart rate and contractility.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: