Mathematical models of biochemical reaction networks are an important and emerging tool for the study of cell signaling networks involved in disease processes. One promising potential application of such mathematical models is the study of how disease-causing mutations promote the signaling phenotype that contributes to the disease. It is commonly assumed that one must have a thorough characterization of the network readily available for mathematical modeling to be useful, but we hypothesized that mathematical modeling could be useful when there is incomplete knowledge and that it could be a tool for discovery that opens new areas for further exploration.
View Article and Find Full Text PDFBackground: Cancer research is pursued with the goal of positively impacting patients with cancer. Decisions regarding how to allocate research funds reflect a complex balancing of priorities and factors. Even though these are subjective decisions, they should be made with consideration of all available objective facts.
View Article and Find Full Text PDFMutant forms of the RAS genes KRAS, NRAS, and HRAS are important and common drivers of cancer. Recently, two independent teams that integrated cancer genomics with cancer epidemiology estimated that approximately 15-20% of all human cancers harbor a mutation in one of these three RAS genes. These groups also estimate KRAS mutations occur in 11-14% of all human cancers.
View Article and Find Full Text PDFPrecision Medicine is an emerging approach for disease treatment and prevention that takes into account individual variability in genes, environment, and lifestyle. Autoimmune diseases are those in which the body's natural defense system loses discriminating power between its own cells and foreign cells, causing the body to mistakenly attack healthy tissues. These conditions are very heterogeneous in their presentation and therefore difficult to diagnose and treat.
View Article and Find Full Text PDFRed blood cell alloimmunization and consequent delayed hemolytic transfusion reaction (DHTR) incidence and mortality in patients with sickle cell disease (SCD) are high. A shared transfusion resource has decreased both in other countries, while in the United States cost concerns persist. We conducted a Markov cohort simulation of a birth cohort of alloimmunized patients with SCD to estimate lifetime DHTR incidence, DHTR-specific mortality, quality-adjusted life expectancy (QALE), and costs with the implementation of a shared transfusion resource to identify antibody history versus without (i.
View Article and Find Full Text PDFRAF kinase inhibitors can, under certain conditions, increase RAF kinase signaling. This process, which is commonly referred to as 'paradoxical activation' (PA), is incompletely understood. We use mathematical and computational modeling to investigate PA and derive rigorous analytical expressions that illuminate the underlying mechanism of this complex phenomenon.
View Article and Find Full Text PDFThis chapter describes how mathematical models can be used to investigate the possible range of behaviors for mutant forms of a protein. A mathematical model of the RAS signaling network that has previously been developed and applied to specific RAS mutants will be adapted for the process of computational random mutagenesis. By using this model to computationally investigate the range of RAS signaling outputs that would be anticipated over a wide range of the relevant parameter space, one can gain intuition about the types of behaviors that would be demonstrated by biological RAS mutants.
View Article and Find Full Text PDFThe combination of KRAS G12C inhibitors with EGFR inhibitors has reproducibly been shown to be beneficial. Here, we identify another benefit of this combination: it effectively inhibits both wild-type and mutant RAS. We believe that targeting both mutant and wild-type RAS helps explain why this combination of inhibitors is effective.
View Article and Find Full Text PDFGenome sequenced samples from cancer patients helped identify roles of different mutation types and enabled targeted therapy development. However, critical questions like what are the gene mutation rates among the patients? or what genes are most commonly mutated, pan-cancer? have only been recently answered. Here, we highlight this recent advance.
View Article and Find Full Text PDFMutations can be important biomarkers that influence the selection of specific cancer treatments. We recently combined mathematical modeling of RAS signaling network biochemistry with experimental cancer cell biology to determine why KRAS G13D is a biomarker for sensitivity to epidermal growth factor receptor (EGFR)-targeted therapies. The critical mechanistic difference between KRAS G13D and the other most common KRAS mutants is impaired binding to tumor suppressor Neurofibromin (NF1).
View Article and Find Full Text PDFMutations play a fundamental role in the development of cancer, and many create targetable vulnerabilities. There are both public health and basic science benefits from the determination of the proportion of all cancer cases within a population that include a mutant form of a gene. Here, we provide the first such estimates by combining genomic and epidemiological data.
View Article and Find Full Text PDFMethods Mol Biol
June 2021
This chapter will describe how mathematical modeling allows the RAS pathway to be studied with computational experiments. The mathematical model utilized simulates the biochemical reactions that regulate RAS signaling. This type of model incorporates knowledge of reaction mechanisms, including measured quantitative parameters that characterize these reactions for both wild-type and mutant RAS proteins.
View Article and Find Full Text PDFWe report on a woman with aggressive estrogen receptor-positive, KRAS-mutated ovarian cancer who achieved a remarkable response to combination therapy with the MEK inhibitor (trametinib) and the aromatase inhibitor (letrozole), even though the disease had failed to respond to a combination of a PI3K inhibitor and different MEK inhibitor, as well as to trametinib and the estrogen modulator, tamoxifen, and to letrozole by itself. The mechanism of action for exceptional response was elucidated by in vitro experiments that demonstrated that the fact that tamoxifen can have an agonistic effect in addition to antagonist activity, whereas letrozole results only in estrogen depletion was crucial to the response achieved when letrozole was combined with an MEK inhibitor. Our current observations indicate that subtle variations in mechanisms of action of outwardly similar regimens may have a major impact on outcome and that such translational knowledge is critical for optimizing a precision medicine strategy.
View Article and Find Full Text PDFPhase three clinical trial evidence suggests that colorectal cancers with the KRAS G13D mutation may benefit from EGFR inhibitors, like cetuximab, in contrast to the other most common KRAS mutations. A mechanism to explain why this mutation behaves differently from other KRAS mutations had long been lacking. Two recent studies have reproduced KRAS G13D specific sensitivity to cetuximab in cellular models, and both have implicated the tumor suppressor NF1 as a critical variable in determining sensitivity and resistance.
View Article and Find Full Text PDFNext-generation sequencing (NGS) can identify novel cancer targets. However, interpreting the molecular findings and accessing drugs/clinical trials is challenging. Furthermore, many tumors show resistance to monotherapies.
View Article and Find Full Text PDFTesting for SARS-CoV-2 has attracted a tremendous amount of attention as a tool to manage the ongoing COVID-19 pandemic. Although diagnostic laboratory testing is used ubiquitously by physicians and encountered regularly by individuals receiving medical care, several aspects of test interpretation are incompletely understood by medical communities and the general population, creating a significant challenge in minimizing the damage caused by disease spread through informed decision making and proper testing utilization. Here, general principles of test interpretation are reviewed and applied to specific examples, such as whether asymptomatic individuals should be tested, what it means to test positive (or negative), and how to interpret tests for "immunity passports.
View Article and Find Full Text PDFPrevious analysis of Phase 3 clinical trial data for colorectal cancer patients treated with cetuximab revealed that patients harboring a KRAS mutation did not benefit from treatment. This finding set the stage for one of the first examples of cancer personalized medicine. Confusingly, patients with a Glycine to Aspartic Acid mutation at amino acid 13 of KRAS (KRAS) appeared to respond positively to cetuximab, suggesting this mutation is an exception to the rule that KRAS mutations confer resistance to Epidermal Growth Factor Receptor (EGFR) inhibitors.
View Article and Find Full Text PDFCancer treatment decisions are increasingly guided by which specific genes are mutated within each patient's tumor. For example, agents inhibiting the epidermal growth factor receptor (EGFR) benefit many colorectal cancer (CRC) patients, with the general exception of those whose tumor includes a mutation. However, among the various mutations, that which encodes the G13D mutant protein (KRAS) behaves differently; for unknown reasons, KRAS CRC patients benefit from the EGFR-blocking antibody cetuximab.
View Article and Find Full Text PDFReceptor tyrosine kinases (RTKs) typically contain multiple autophosphorylation sites in their cytoplasmic domains. Once activated, these autophosphorylation sites can recruit downstream signaling proteins containing Src homology 2 (SH2) and phosphotyrosine-binding (PTB) domains, which recognize phosphotyrosine-containing short linear motifs (SLiMs). These domains and SLiMs have polyspecific or promiscuous binding activities.
View Article and Find Full Text PDFThis report summarizes and highlights the fifth International RASopathies Symposium: When Development and Cancer Intersect, held in Orlando, Florida in July 2017. The RASopathies comprise a recognizable pattern of malformation syndromes that are caused by germ line mutations in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) pathway. Because of their common underlying pathogenetic etiology, there is significant overlap in their phenotypic features, which includes craniofacial dysmorphology, cardiac, cutaneous, musculoskeletal, gastrointestinal and ocular abnormalities, neurological and neurocognitive issues, and a predisposition to cancer.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
May 2018
KRAS has proven difficult to target pharmacologically. Two strategies have recently been described for covalently targeting the most common KRAS mutant in lung cancer, KRAS G12C. Previously, we developed a computational model of the processes that regulate Ras activation.
View Article and Find Full Text PDFBackground: The choice of a regimen in metastatic pancreatic cancer patients following progression on 1st line therapy is empiric and outcomes are unsatisfactory. This phase II study was performed to evaluate the efficacy of therapy selected by immunohistochemistry (IHC) in these patients following progression after one or more therapies.
Methods: Eligible patients underwent a percutaneous biopsy of a metastatic lesion and treatment selection was determined by IHC.
Proteins in cell signaling networks tend to interact promiscuously through low-affinity interactions. Consequently, evaluating the physiological importance of mapped interactions can be difficult. Attempts to do so have tended to focus on single, measurable physicochemical factors, such as affinity or abundance.
View Article and Find Full Text PDFCancer develops after the acquisition of a collection of mutations that together create the cancer phenotype. How collections of mutations work together within a cell and whether there is selection for certain combinations of mutations are not well understood. We investigated this problem with a mathematical model of the Ras signaling network, including a computational random mutagenesis.
View Article and Find Full Text PDF