Publications by authors named "Edward Sharman"

Accurately and rapidly acquiring the microscopic properties of a material is crucial for catalysis and electrochemistry. Characterization tools, such as spectroscopy, can be a valuable tool to infer these properties, and when combined with machine learning tools, they can theoretically achieve fast and accurate prediction results. However, on the path to practical applications, training a reliable machine learning model is faced with the challenge of uneven data distribution in a vast array of non-negligible solvent types.

View Article and Find Full Text PDF

Label-free data mining can efficiently feed large amounts of data from the vast scientific literature into artificial intelligence (AI) processing systems. Here, we demonstrate an unsupervised syntactic distance analysis (SDA) approach that is capable of mining chemical substances, functions, properties, and operations without annotation. This SDA approach was evaluated in several areas of research from the physical sciences and achieved performance in information mining comparable to that of supervised learning, as shown by its satisfactory scores of 0.

View Article and Find Full Text PDF

Traditional trial-and-error experiments and theoretical simulations have difficulty optimizing catalytic processes and developing new, better-performing catalysts. Machine learning (ML) provides a promising approach for accelerating catalysis research due to its powerful learning and predictive abilities. The selection of appropriate input features (descriptors) plays a decisive role in improving the predictive accuracy of ML models and uncovering the key factors that influence catalytic activity and selectivity.

View Article and Find Full Text PDF

As an important factor in the design of catalysts, catalytic descriptor exploration has emerged as a novel frontier in heterogeneous catalysis. Here, the underlying structure-activity relationships of Ru-based catalysts are theoretically studied to shed light on this area. Calculations of different competing reaction paths suggest that the HCO*-mediated path─because of two synergistic active sites─is more favorable than others.

View Article and Find Full Text PDF

Zn is an important contributor to ischemic brain injury, and recent studies support the hypothesis that mitochondria are key sites of its injurious effects. In murine hippocampal slices (both sexes) subjected to oxygen glucose deprivation (OGD), we found that Zn accumulation and its entry into mitochondria precedes and contributes to the induction of acute neuronal death. In addition, if the ischemic episode is short (and sublethal), there is ongoing Zn accumulation in CA1 mitochondria after OGD that may contribute to their delayed dysfunction.

View Article and Find Full Text PDF

Developing efficient single-atom catalysts (SACs) for nitrogen fixation is of great importance while remaining a great challenge. The lack of an effective strategy to control the polarization electric field of SACs limits their activity and selectivity. Here, using first-principles calculations, we report that a single transition metal (TM) atom sandwiched between hexagonal boron nitride (h-BN) and graphene sheets (namely, BN/TM/G) acts as an efficient SAC for the electrochemical nitrogen reduction reaction (NRR).

View Article and Find Full Text PDF

The production of ammonia (NH) from molecular dinitrogen (N) under ambient conditions is of great significance but remains as a great challenge. Using first-principles calculations, we have investigated the potential of using a transition metal (TM) atom embedded on defective MXene nanosheets (TiCO and TiCO with a Ti vacancy) as a single-atom electrocatalyst (SAC) for the nitrogen reduction reaction (NRR). The TiCO nanosheet with Mo and W embedded, and the TiCO nanosheet with Cr, Mo, and W embedded, can significantly promote the NRR while suppressing the competitive hydrogen evolution reaction, with the low limiting potential of -0.

View Article and Find Full Text PDF

Bond dissociation energy (BDE), an indicator of the strength of chemical bonds, exhibits great potential for evaluating and screening high-performance materials and catalysts, which are of critical importance in industrial applications. However, the measurement or computation of BDE via conventional experimental or theoretical methods is usually costly and involved, substantially preventing the BDE from being applied to large-scale and high-throughput studies. Therefore, a potentially more efficient approach for estimating BDE is highly desirable.

View Article and Find Full Text PDF

The challenge of evaluating catalyst surface-molecular adsorbate interactions holds the key for rational design of catalysts. Finding an experimentally measurable and theoretically computable descriptor for evaluating surface-adsorbate interactions is a significant step toward achieving this goal. Here we show that the electric dipole moment can serve as a convenient yet accurate descriptor for establishing structure-property relationships for molecular adsorbates on metal catalyst surfaces.

View Article and Find Full Text PDF

Achieving good charge separation while maintaining energetic electronic states in heterostructures is a challenge in designing efficient photocatalyst materials. Using first-principles calculations, we propose a Z-scheme S-m-S (n-semiconductor-metal-p-semiconductor) heterojunction as a viable avenue for achieving broad-spectrum sunlight absorption and, importantly, energy-dependent charge separation. As a proof-of-concept investigation, we investigated two ternary heterostructures, CdS-Au-PdO and SnO-W-AgO, in which the electronic Fermi levels line up by virtue of the presence of an intermediate metal layer.

View Article and Find Full Text PDF

Searching for cost-effective photothermal material that can harvest the full solar spectrum is critically important for solar-driven water evaporation. Metal oxides are cheap materials but cannot cover the full solar spectrum. Here we prepared a hydrogenated metal oxide (HMoO) material, in which H-doping causes the insulator-to-metal phase transition of the originally semiconductive MoO.

View Article and Find Full Text PDF

Composite structures have been widely utilized to improve material performance. Here we report a semiconductor-metal hybrid structure (CuO/Ag) for CO oxidation that possesses very promising activity. Our first-principles calculations demonstrate that the significant improvement in this system's catalytic performance mainly comes from the polarized charge injection that results from the Schottky barrier formed at the CuO/Ag interface due to the work function differential there.

View Article and Find Full Text PDF

Optimizing physical or chemical properties via electronic phase transitions is important for developing high-performance semiconductor materials. Using first-principles calculations, we established hydrogen doping (H-doping) as an alternative strategy for modulating phase transitions in metal oxide semiconductors. We found that H-doping can induce an insulator-to-metal phase transition in rutile TiO or wurtzite ZnO, a metal-to-insulator phase transition in rutile VO, and sequential insulator-metal-insulator phase transitions in SnO.

View Article and Find Full Text PDF

The fluorescence emission from green fluorescent protein (GFP) is known to be heavily influenced by hydrogen bonding between the core fluorophore and the surrounding side chains or water molecules. Yet how to utilize this feature for modulating the fluorescence of GFP chromophore or GFP-like fluorophore still remains elusive. Here we present theoretical calculations to predict how hydrogen bonding could influence the excited states of the GFP-like fluorophores.

View Article and Find Full Text PDF

Luminescent materials with tunable wavelengths have been attracting much attention due to their many promising applications. In the present work, the recently reported supramolecular coordination complexes of tetra-(4-pyridylphenyl)ethylene (TPPE) that produce variable-wavelength light emissions were investigated by time-dependent density functional theory (TDDFT) calculations. We discovered that variations in the luminescent wavelength of TPPE mainly depend on the structural deviations from molecular planarity, which affect the molecular orbital wavefunction distribution.

View Article and Find Full Text PDF

Dendritic cells (DCs) are major antigen-presenting cells that play a key role in initiating and regulating innate and adaptive immune responses. DCs are critical mediators of tolerance and immunity. The functional properties of DCs decline with age.

View Article and Find Full Text PDF

The aged brain is prone to excessive levels of immune activity, not initiated by an acute response to an extrinsic agent. While dietary melatonin is reported to attenuate the extent of expression of proinflammatory genes, little is known about the extent to which these changes can be translated into altered levels of corresponding proteins. The baseline levels of the proinflammatory cytokines, tumor necrosis factor alpha (TNF-α) and interleukin-1 alpha, were greater in older (~29 months old) compared to younger (~7 months old) mouse brains.

View Article and Find Full Text PDF

Treatment with a combination of four nutrients, i.e. R-α-lipoic acid, acetyl-l-carnitine, nicotinamide and biotin, just as with pioglitazone, significantly improves glucose tolerance, insulin release, plasma NEFA, skeletal muscle mitochondrial biogenesis and oxidative stress in Goto-Kakizaki (GK) rats.

View Article and Find Full Text PDF

Several sets of male mice were given dietary melatonin over a series of experiments performed during a nine year period. Overall, melatonin-supplemented mice aged ≥26 months at sacrifice had significantly fewer tumors with lower severity than similarly aged control animals. The studies were originally designed to explore the potential of this agent for reducing the rate of onset of some genetic indices of brain aging.

View Article and Find Full Text PDF

Studies in this laboratory have previously shown that hydroxytyrosol, the major antioxidant polyphenol in olives, protects ARPE-19 human retinal pigment epithelial cells from oxidative damage induced by acrolein, an environmental toxin and endogenous end product of lipid oxidation, that occurs at increased levels in age-related macular degeneration lesions. A proposed mechanism for this is that protection by hydroxytyrosol against oxidative stress is conferred by the simultaneous activation of two critically important pathways, viz., induction of phase II detoxifying enzymes and stimulation of mitochondrial biogenesis.

View Article and Find Full Text PDF

Groups of younger and aged mice were fed either minimal basal diet or the same diet containing 40 ppm melatonin. After 9.3 weeks half of each of these 4 groups of animals received either an intraperitoneal injection of lipopolysaccharide (LPS) or of saline.

View Article and Find Full Text PDF

Aging is associated with progressive T-cell deficiency and increased incidence of infections, cancer and autoimmunity. In this comprehensive study, we have compared the gene expression profiles in CD8+ T cells from aged and young healthy subjects using Affymetrix microarray Human Genome U133A-2 GeneChips. A total of 5.

View Article and Find Full Text PDF

Hydroxytyrosol (HT) in extra-virgin olive oil is considered one of the most important polyphenolic compounds responsible for the health benefits of the Mediterranean diet for lowering incidence of cardiovascular disease, the most common and most serious complication of diabetes. We propose that HT may prevent these diseases by a stimulation of mitochondrial biogenesis that leads to enhancement of mitochondrial function and cellular defense systems. In the present study, we investigated effects of HT that stimulate mitochondrial biogenesis and promote mitochondrial function in 3T3-L1 adipocytes.

View Article and Find Full Text PDF

The development of type 2 diabetes is accompanied by decreased immune function and the mechanisms are unclear. We hypothesize that oxidative damage and mitochondrial dysfunction may play an important role in the immune dysfunction in diabetes. In the present study, we investigated this hypothesis in diabetic Goto-Kakizaki rats by treatment with a combination of four mitochondrial-targeting nutrients, namely, R-alpha-lipoic acid, acetyl-L-carnitine, nicotinamide and biotin.

View Article and Find Full Text PDF

Mitochondrial dysfunction due to oxidative stress and concomitant impaired beta-cell function may play a key role in type 2 diabetes. Preventing and/or ameliorating oxidative mitochondrial dysfunction with mitochondria-specific nutrients may have preventive or therapeutic potential. In the present study, the oxidative mechanism of mitochondrial dysfunction in pancreatic beta-cells exposed to sublethal levels of oleic acid (OA) and the protective effects of mitochondrial nutrients [R-alpha-lipoic acid (LA) and acetyl-L-carnitine (ALC)] were investigated.

View Article and Find Full Text PDF