Publications by authors named "Edward Sayers"

Introduction: Acute myeloid leukemia (AML) remains difficult to treat due to its heterogeneity in molecular landscape, epigenetics and cell signaling alterations. Precision medicine is a major goal in AML therapy towards developing agents that can be used to treat patients with different 'subtypes' in combination with current chemotherapies. We have previously developed dextrin-colistin conjugates to combat the rise in multi-drug resistant bacterial infections and overcome dose-limiting nephrotoxicity.

View Article and Find Full Text PDF

The acute kidney injury (AKI) and dose-limiting nephrotoxicity, which occurs in 20-60% of patients following systemic administration of colistin, represents a challenge in the effective treatment of multi-drug resistant Gram-negative infections. To reduce clinical toxicity of colistin and improve targeting to infected/inflamed tissues, we previously developed dextrin-colistin conjugates, whereby colistin is designed to be released by amylase-triggered degradation of dextrin in infected and inflamed tissues, after passive targeting by the enhanced permeability and retention effect. Whilst it was evident that polymer conjugation can reduce toxicity and prolong plasma half-life, without significant reduction in antimicrobial activity of colistin, it was unclear how dextrin conjugation would alter cellular uptake and localisation of colistin in renal tubular cells .

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs), such as penetratin, are often investigated as drug delivery vectors and incorporating d-amino acids, rather than the natural l-forms, to enhance proteolytic stability could improve their delivery efficiency. The present study aimed to compare membrane association, cellular uptake, and delivery capacity for all-l and all-d enantiomers of penetratin (PEN) by using different cell models and cargos. The enantiomers displayed widely different distribution patterns in the examined cell models, and in Caco-2 cells, quenchable membrane binding was evident for d-PEN in addition to vesicular intracellular localization for both enantiomers.

View Article and Find Full Text PDF

The cell interaction, mechanism of cell entry and intracellular fate of surface decorated nanoparticles are known to be affected by the surface density of targeting agents. However, the correlation between nanoparticles multivalency and kinetics of the cell uptake process and disposition of intracellular compartments is complicated and dependent on a number of physicochemical and biological parameters, including the ligand, nanoparticle composition and colloidal properties, features of targeted cells, etc. Here, we have carried out an in-depth investigation on the impact of increasing folic acid density on the kinetic uptake process and endocytic route of folate (FA)-targeted fluorescently labelled gold nanoparticles (AuNPs).

View Article and Find Full Text PDF

With the aim of designing new metallosupramolecular architectures for drug delivery, research has focused on porous 3-dimensional (3D)-metallacages able to encapsulate cytotoxic agents protecting them from metabolism while targeting them to cancer sites. Here, two self-assembled [PdL] cages (CG1 and CG2) featuring 3,5-bis(3-ethynylpyridine)phenyl ligands (L) -functionalised with dipyrromethene (BODIPY) groups have been synthesised and characterised by different methods, including NMR spectroscopy and mass spectrometry. H NMR spectroscopy studies shows that the cages are able to encapsulate the anticancer drug cisplatin in their hydrophobic cavity, as evidenced by electrostatic potential (ESP) analysis based on XRD studies.

View Article and Find Full Text PDF

The iron-binding protein lactoferrin and the cell-penetrating peptides derived from its sequence utilise endocytosis to enter different cell types. The full-length protein has been extensively investigated as a potential therapeutic against a range of pathogenic bacteria, fungi, and viruses, including SARS-CoV-2. As a respiratory antiviral agent, several activity mechanisms have been demonstrated for lactoferrin, at the extracellular and plasma membrane levels, but as a protein that enters cells it may also have intracellular antiviral activity.

View Article and Find Full Text PDF

Cyclization of cell-penetrating peptides (CPPs) often results in improved capacity for intracellular delivery of a range of cargoes but quantitating the distinct subcellular localization of them, and their linear counterparts, remains a challenge. Here we describe an optimized method for recombinant generation and purification of eGFP attached to the cyclic form of the newly discovered CPP EJP18 in E. coli.

View Article and Find Full Text PDF

Schistosomiasis is a neglected disease of poverty that is caused by infection with blood fluke species contained within the genus Schistosoma. For the last 40 years, control of schistosomiasis in endemic regions has predominantly been facilitated by administration of a single drug, praziquantel. Due to limitations in this mono-chemotherapeutic approach for sustaining schistosomiasis control into the future, alternative anti-schistosomal compounds are increasingly being sought by the drug discovery community.

View Article and Find Full Text PDF

Efficacious anticancer therapies for targeting plasma membrane receptors with antibody based therapeutics are often contingent on sufficient endocytic delivery of receptor and conjugate to lysosomes. This results in downregulation of receptor activity and, in the case of antibody-drug conjugates (ADCs), intracellular release of a drug payload. The oncogenic receptor HER2 is a priority therapeutic target in breast cancer.

View Article and Find Full Text PDF

Organelle-specific delivery systems are of significant clinical interest. We demonstrate the use of common cyanine dyes Cy3 and Cy5 as vectors for targeting and delivering cargoes to mitochondria in cancer cells. Specifically, conjugation to the dyes can increase cytotoxicity by up to 1000-fold.

View Article and Find Full Text PDF

Gold nanoparticles have been researched for many biomedical applications in diagnostics, theranostics, and as drug delivery systems. When conjugated to fluorophores, their interaction with biological cells can be studied in situ and real time using fluorescence microscopy. However, an important question that has remained elusive to answer is whether the fluorophore is a faithful reporter of the nanoparticle location.

View Article and Find Full Text PDF

Lipid nanoparticles have great potential for delivering nucleic-acid-based therapeutics, but low efficiency limits their broad clinical translation. Differences in transfection capacity between in vitro models used for nanoparticle pre-clinical testing are poorly understood. To address this, using a clinically relevant lipid nanoparticle (LNP) delivering mRNA, we highlight specific endosomal characteristics in in vitro tumor models that impact protein expression.

View Article and Find Full Text PDF

Recently, 3-dimensional supramolecular coordination complexes of the metallacage type have been shown to hold promise as drug delivery systems for different cytotoxic agents, including the anticancer drug cisplatin. However, so far only limited information is available on their uptake and sub-cellular localisation in cancer cells. With the aim of understanding the fate of metallacages in cells by fluorescence microscopy, three fluorescent PdL metallacages were designed and synthesised by self-assembly of two types of bispyridyl ligands (L), exo-functionalised with boron dipyrromethene (BODIPY) moieties, with Pd(II) ions.

View Article and Find Full Text PDF

Specific cell targeting and efficient intracellular delivery are major hurdles for the widespread therapeutic use of nucleic acid technologies, particularly siRNA mediated gene silencing. To enable receptor-mediated cell-specific targeting, we designed a synthesis scheme that can be generically used to engineer Designed Ankyrin Repeat Protein (DARPin)-siRNA bioconjugates. Different linkers, including labile disulfide-, and more stable thiol-maleimide- and triazole- (click chemistry) tethers were employed.

View Article and Find Full Text PDF

Protein therapy holds great promise for treating a variety of diseases. To act on intracellular targets, therapeutic proteins must cross the plasma membrane. This has previously been achieved by covalent attachment to a variety of cell-penetrating peptides (CPPs).

View Article and Find Full Text PDF

Ligand-mediated targeting and internalization of plasma membrane receptors is central to cellular function. These types of receptors have accordingly been investigated as targets to facilitate entry of diagnostic and therapeutic constructs into cells. However, there remains a need to characterize how receptor targeting agents on nanoparticles interact at surface receptors and whether it is possible to control these interactions via exogenous stimuli.

View Article and Find Full Text PDF

A major unmet clinical need is a universal method for subcellular targeting of bioactive molecules to lysosomes. Delivery to this organelle enables either degradation of oncogenic receptors that are overexpressed in cancers, or release of prodrugs from antibody-drug conjugates. Here, we describe a general method that uses receptor crosslinking to trigger endocytosis and subsequently redirect trafficking of receptor:cargo complexes from their expected route, to lysosomes.

View Article and Find Full Text PDF

Glycol chitosan nanogels have been widely used in gene, drug, and contrast agent delivery in an effort to improve disease diagnosis and treatment. Herein, we evaluate the internalization mechanisms and intracellular fate of previously described glycol chitosan nanogels decorated with folate to target the folate receptor. Uptake of the folate-decorated nanogel was impaired by free folate, suggesting competitive inhibition and shared internalization mechanisms via the folate receptor.

View Article and Find Full Text PDF

Purpose: To investigate the suitability of three antimicrobial peptides (AMPs) as cell-penetrating antimicrobial peptides.

Methods: Cellular uptake of three AMPs (PK-12-KKP, SA-3 and TPk) and a cell-penetrating peptide (penetratin), all 5(6)-carboxytetramethylrhodamine-labeled, were tested in HeLa WT cells and analyzed by flow cytometry and confocal microscopy. Furthermore, the effects of the peptides on eukaryotic cell viability as well as their antimicrobial effect were tested.

View Article and Find Full Text PDF

Cell penetrating peptides hold considerable potential for academic and pharmaceutical remits with an interest in delivering macromolecules to the insides of cells. Hundreds of sequences now fall within the cell penetrating peptide classification and HIV-Tat, penetratin, transportan, and octaarginine represent extensively studied variants. The process by which membrane translocation is achieved has received significant interest in an aim to exploit new mechanistic knowledge to gain higher efficiency of penetration.

View Article and Find Full Text PDF

Delivering apoptosis inducing peptides to cells is an emerging area in cancer and molecular therapeutics. Here, we have identified an alternative mechanism of action for the proapoptotic chimeric peptide D-NuBCP-9-r8. Integral to D-NuBCP-9-r8 is the Nur-77-derived D-isoform sequence fsrslhsll that targets Bcl-2, and the cell-penetrating peptide (CPP) octaarginine (r8) that is required for intracellular delivery.

View Article and Find Full Text PDF